This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move negation outside of biconditional. Compare Theorem *5.18 of WhiteheadRussell p. 124. (Contributed by NM, 27-Jun-2002) (Proof shortened by Wolf Lammen, 20-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbbn | ⊢ ( ( ¬ 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor3 | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) | |
| 2 | con2bi | ⊢ ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) ) | |
| 3 | bicom | ⊢ ( ( 𝜓 ↔ ¬ 𝜑 ) ↔ ( ¬ 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 2 3 | 3bitrri | ⊢ ( ( ¬ 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) |