This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qexpz | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ∈ ℤ ↔ 0 ∈ ℤ ) ) | |
| 2 | simpll2 | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℕ ) | |
| 3 | 2 | nncnd | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℂ ) |
| 4 | 3 | mul01d | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑁 · 0 ) = 0 ) |
| 5 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 6 | simpll3 | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) | |
| 7 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℚ ) | |
| 8 | qcn | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℂ ) |
| 10 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ≠ 0 ) | |
| 11 | 2 | nnzd | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
| 12 | 9 10 11 | expne0d | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 13 | pczcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ≠ 0 ) ) → ( 𝑝 pCnt ( 𝐴 ↑ 𝑁 ) ) ∈ ℕ0 ) | |
| 14 | 5 6 12 13 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 ↑ 𝑁 ) ) ∈ ℕ0 ) |
| 15 | 14 | nn0ge0d | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( 𝑝 pCnt ( 𝐴 ↑ 𝑁 ) ) ) |
| 16 | pcexp | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑝 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑝 pCnt 𝐴 ) ) ) | |
| 17 | 5 7 10 11 16 | syl121anc | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑝 pCnt 𝐴 ) ) ) |
| 18 | 15 17 | breqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( 𝑁 · ( 𝑝 pCnt 𝐴 ) ) ) |
| 19 | 4 18 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑁 · 0 ) ≤ ( 𝑁 · ( 𝑝 pCnt 𝐴 ) ) ) |
| 20 | 0red | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 0 ∈ ℝ ) | |
| 21 | pcqcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) | |
| 22 | 5 7 10 21 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
| 23 | 22 | zred | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) |
| 24 | 2 | nnred | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
| 25 | 2 | nngt0d | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 0 < 𝑁 ) |
| 26 | lemul2 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 0 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑁 · 0 ) ≤ ( 𝑁 · ( 𝑝 pCnt 𝐴 ) ) ) ) | |
| 27 | 20 23 24 25 26 | syl112anc | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑁 · 0 ) ≤ ( 𝑁 · ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 28 | 19 27 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( 𝑝 pCnt 𝐴 ) ) |
| 29 | 28 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) |
| 30 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℚ ) | |
| 31 | pcz | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ∈ ℤ ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ ℤ ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) ) |
| 33 | 29 32 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℤ ) |
| 34 | 0zd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → 0 ∈ ℤ ) | |
| 35 | 1 33 34 | pm2.61ne | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → 𝐴 ∈ ℤ ) |