This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qrevaddcl | ⊢ ( 𝐵 ∈ ℚ → ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) ↔ 𝐴 ∈ ℚ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) | |
| 2 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 4 | 3 | ancoms | ⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 6 | qsubcl | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐵 ∈ ℚ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) |
| 9 | 5 8 | eqeltrrd | ⊢ ( ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → 𝐴 ∈ ℚ ) |
| 10 | 9 | ex | ⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ∈ ℚ → 𝐴 ∈ ℚ ) ) |
| 11 | qaddcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) | |
| 12 | 11 | expcom | ⊢ ( 𝐵 ∈ ℚ → ( 𝐴 ∈ ℚ → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ℚ → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 14 | 10 13 | impbid | ⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ∈ ℚ ↔ 𝐴 ∈ ℚ ) ) |
| 15 | 14 | pm5.32da | ⊢ ( 𝐵 ∈ ℚ → ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ ) ) ) |
| 16 | qcn | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) | |
| 17 | 16 | pm4.71ri | ⊢ ( 𝐴 ∈ ℚ ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ ) ) |
| 18 | 15 17 | bitr4di | ⊢ ( 𝐵 ∈ ℚ → ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) ↔ 𝐴 ∈ ℚ ) ) |