This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qden1elz | ⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qeqnumdivden | ⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
| 3 | oveq2 | ⊢ ( ( denom ‘ 𝐴 ) = 1 → ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) = ( ( numer ‘ 𝐴 ) / 1 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) = ( ( numer ‘ 𝐴 ) / 1 ) ) |
| 5 | qnumcl | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( numer ‘ 𝐴 ) ∈ ℤ ) |
| 7 | 6 | zcnd | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( numer ‘ 𝐴 ) ∈ ℂ ) |
| 8 | 7 | div1d | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → ( ( numer ‘ 𝐴 ) / 1 ) = ( numer ‘ 𝐴 ) ) |
| 9 | 2 4 8 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → 𝐴 = ( numer ‘ 𝐴 ) ) |
| 10 | 9 6 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( denom ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℤ ) |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 12 | 11 | zcnd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 13 | 12 | div1d | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 / 1 ) = 𝐴 ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ ( 𝐴 / 1 ) ) = ( denom ‘ 𝐴 ) ) |
| 15 | 1nn | ⊢ 1 ∈ ℕ | |
| 16 | divdenle | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 1 ) ) ≤ 1 ) | |
| 17 | 11 15 16 | sylancl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ ( 𝐴 / 1 ) ) ≤ 1 ) |
| 18 | 14 17 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ 𝐴 ) ≤ 1 ) |
| 19 | qdencl | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ 𝐴 ) ∈ ℕ ) |
| 21 | nnle1eq1 | ⊢ ( ( denom ‘ 𝐴 ) ∈ ℕ → ( ( denom ‘ 𝐴 ) ≤ 1 ↔ ( denom ‘ 𝐴 ) = 1 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( ( denom ‘ 𝐴 ) ≤ 1 ↔ ( denom ‘ 𝐴 ) = 1 ) ) |
| 23 | 18 22 | mpbid | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ ) → ( denom ‘ 𝐴 ) = 1 ) |
| 24 | 10 23 | impbida | ⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |