This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qden1elz | |- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qeqnumdivden | |- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
| 3 | oveq2 | |- ( ( denom ` A ) = 1 -> ( ( numer ` A ) / ( denom ` A ) ) = ( ( numer ` A ) / 1 ) ) |
|
| 4 | 3 | adantl | |- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( ( numer ` A ) / ( denom ` A ) ) = ( ( numer ` A ) / 1 ) ) |
| 5 | qnumcl | |- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
|
| 6 | 5 | adantr | |- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( numer ` A ) e. ZZ ) |
| 7 | 6 | zcnd | |- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( numer ` A ) e. CC ) |
| 8 | 7 | div1d | |- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> ( ( numer ` A ) / 1 ) = ( numer ` A ) ) |
| 9 | 2 4 8 | 3eqtrd | |- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A = ( numer ` A ) ) |
| 10 | 9 6 | eqeltrd | |- ( ( A e. QQ /\ ( denom ` A ) = 1 ) -> A e. ZZ ) |
| 11 | simpr | |- ( ( A e. QQ /\ A e. ZZ ) -> A e. ZZ ) |
|
| 12 | 11 | zcnd | |- ( ( A e. QQ /\ A e. ZZ ) -> A e. CC ) |
| 13 | 12 | div1d | |- ( ( A e. QQ /\ A e. ZZ ) -> ( A / 1 ) = A ) |
| 14 | 13 | fveq2d | |- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` ( A / 1 ) ) = ( denom ` A ) ) |
| 15 | 1nn | |- 1 e. NN |
|
| 16 | divdenle | |- ( ( A e. ZZ /\ 1 e. NN ) -> ( denom ` ( A / 1 ) ) <_ 1 ) |
|
| 17 | 11 15 16 | sylancl | |- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` ( A / 1 ) ) <_ 1 ) |
| 18 | 14 17 | eqbrtrrd | |- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) <_ 1 ) |
| 19 | qdencl | |- ( A e. QQ -> ( denom ` A ) e. NN ) |
|
| 20 | 19 | adantr | |- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) e. NN ) |
| 21 | nnle1eq1 | |- ( ( denom ` A ) e. NN -> ( ( denom ` A ) <_ 1 <-> ( denom ` A ) = 1 ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. QQ /\ A e. ZZ ) -> ( ( denom ` A ) <_ 1 <-> ( denom ` A ) = 1 ) ) |
| 23 | 18 22 | mpbid | |- ( ( A e. QQ /\ A e. ZZ ) -> ( denom ` A ) = 1 ) |
| 24 | 10 23 | impbida | |- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |