This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsle.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsle.v | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsle.o | ⊢ 𝑂 = ( le ‘ 𝑅 ) | ||
| pwsle.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| Assertion | pwsle | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ≤ = ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsle.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsle.v | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwsle.o | ⊢ 𝑂 = ( le ‘ 𝑅 ) | |
| 4 | pwsle.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 5 | vex | ⊢ 𝑓 ∈ V | |
| 6 | vex | ⊢ 𝑔 ∈ V | |
| 7 | 5 6 | prss | ⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ↔ { 𝑓 , 𝑔 } ⊆ 𝐵 ) |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 9 | 1 8 | pwsval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 11 | 2 10 | eqtrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 12 | 11 | sseq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( { 𝑓 , 𝑔 } ⊆ 𝐵 ↔ { 𝑓 , 𝑔 } ⊆ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) ) |
| 13 | 7 12 | bitrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ↔ { 𝑓 , 𝑔 } ⊆ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) ) |
| 14 | 13 | anbi1d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ ( { 𝑓 , 𝑔 } ⊆ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 15 | fvconst2g | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) | |
| 16 | 15 | ad4ant14 | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( le ‘ 𝑅 ) ) |
| 18 | 17 3 | eqtr4di | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = 𝑂 ) |
| 19 | 18 | breqd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) 𝑂 ( 𝑔 ‘ 𝑥 ) ) ) |
| 20 | 19 | ralbidva | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) 𝑂 ( 𝑔 ‘ 𝑥 ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 22 | simpll | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑅 ∈ 𝑉 ) | |
| 23 | simplr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) | |
| 24 | simprl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) | |
| 25 | 1 21 2 22 23 24 | pwselbas | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 26 | 25 | ffnd | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 Fn 𝐼 ) |
| 27 | simprr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) | |
| 28 | 1 21 2 22 23 27 | pwselbas | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 29 | 28 | ffnd | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 Fn 𝐼 ) |
| 30 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 31 | eqidd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 32 | eqidd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 33 | 26 29 24 27 30 31 32 | ofrfvalg | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ∘r 𝑂 𝑔 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) 𝑂 ( 𝑔 ‘ 𝑥 ) ) ) |
| 34 | 20 33 | bitr4d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ 𝑓 ∘r 𝑂 𝑔 ) ) |
| 35 | 34 | pm5.32da | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑓 ∘r 𝑂 𝑔 ) ) ) |
| 36 | brinxp2 | ⊢ ( 𝑓 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝑔 ↔ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑓 ∘r 𝑂 𝑔 ) ) | |
| 37 | 35 36 | bitr4di | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ 𝑓 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝑔 ) ) |
| 38 | 14 37 | bitr3d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( { 𝑓 , 𝑔 } ⊆ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ 𝑓 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝑔 ) ) |
| 39 | 38 | opabbidv | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ 𝑓 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝑔 } ) |
| 40 | 9 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( le ‘ 𝑌 ) = ( le ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 41 | 4 40 | eqtrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ≤ = ( le ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 42 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 43 | fvexd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 44 | simpr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) | |
| 45 | snex | ⊢ { 𝑅 } ∈ V | |
| 46 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ { 𝑅 } ∈ V ) → ( 𝐼 × { 𝑅 } ) ∈ V ) | |
| 47 | 44 45 46 | sylancl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 𝑅 } ) ∈ V ) |
| 48 | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 49 | snnzg | ⊢ ( 𝑅 ∈ 𝑉 → { 𝑅 } ≠ ∅ ) | |
| 50 | 49 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑅 } ≠ ∅ ) |
| 51 | dmxp | ⊢ ( { 𝑅 } ≠ ∅ → dom ( 𝐼 × { 𝑅 } ) = 𝐼 ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → dom ( 𝐼 × { 𝑅 } ) = 𝐼 ) |
| 53 | eqid | ⊢ ( le ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( le ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 54 | 42 43 47 48 52 53 | prdsle | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( le ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 55 | 41 54 | eqtrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 56 | relinxp | ⊢ Rel ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) | |
| 57 | 56 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → Rel ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) ) |
| 58 | dfrel4v | ⊢ ( Rel ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) ↔ ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) = { 〈 𝑓 , 𝑔 〉 ∣ 𝑓 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝑔 } ) | |
| 59 | 57 58 | sylib | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) = { 〈 𝑓 , 𝑔 〉 ∣ 𝑓 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝑔 } ) |
| 60 | 39 55 59 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ≤ = ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) ) |