This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsle.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsle.v | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsle.o | ⊢ 𝑂 = ( le ‘ 𝑅 ) | ||
| pwsle.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| pwsleval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| pwsleval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| pwsleval.a | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| pwsleval.b | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | pwsleval | ⊢ ( 𝜑 → ( 𝐹 ≤ 𝐺 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐺 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsle.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsle.v | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwsle.o | ⊢ 𝑂 = ( le ‘ 𝑅 ) | |
| 4 | pwsle.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 5 | pwsleval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 6 | pwsleval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | pwsleval.a | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 8 | pwsleval.b | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 9 | 1 2 3 4 | pwsle | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ≤ = ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) ) |
| 10 | 5 6 9 | syl2anc | ⊢ ( 𝜑 → ≤ = ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) ) |
| 11 | 10 | breqd | ⊢ ( 𝜑 → ( 𝐹 ≤ 𝐺 ↔ 𝐹 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝐺 ) ) |
| 12 | brinxp | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∘r 𝑂 𝐺 ↔ 𝐹 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝐺 ) ) | |
| 13 | 7 8 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑂 𝐺 ↔ 𝐹 ( ∘r 𝑂 ∩ ( 𝐵 × 𝐵 ) ) 𝐺 ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | 1 14 2 5 6 7 | pwselbas | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | 15 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 17 | 1 14 2 5 6 8 | pwselbas | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 | 17 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
| 19 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 20 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 21 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 22 | 16 18 7 8 19 20 21 | ofrfvalg | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑂 𝐺 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 | 11 13 22 | 3bitr2d | ⊢ ( 𝜑 → ( 𝐹 ≤ 𝐺 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐺 ‘ 𝑥 ) ) ) |