This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsle.y | |- Y = ( R ^s I ) |
|
| pwsle.v | |- B = ( Base ` Y ) |
||
| pwsle.o | |- O = ( le ` R ) |
||
| pwsle.l | |- .<_ = ( le ` Y ) |
||
| Assertion | pwsle | |- ( ( R e. V /\ I e. W ) -> .<_ = ( oR O i^i ( B X. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsle.y | |- Y = ( R ^s I ) |
|
| 2 | pwsle.v | |- B = ( Base ` Y ) |
|
| 3 | pwsle.o | |- O = ( le ` R ) |
|
| 4 | pwsle.l | |- .<_ = ( le ` Y ) |
|
| 5 | vex | |- f e. _V |
|
| 6 | vex | |- g e. _V |
|
| 7 | 5 6 | prss | |- ( ( f e. B /\ g e. B ) <-> { f , g } C_ B ) |
| 8 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 9 | 1 8 | pwsval | |- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 10 | 9 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 11 | 2 10 | eqtrid | |- ( ( R e. V /\ I e. W ) -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 12 | 11 | sseq2d | |- ( ( R e. V /\ I e. W ) -> ( { f , g } C_ B <-> { f , g } C_ ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) ) |
| 13 | 7 12 | bitrid | |- ( ( R e. V /\ I e. W ) -> ( ( f e. B /\ g e. B ) <-> { f , g } C_ ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) ) |
| 14 | 13 | anbi1d | |- ( ( R e. V /\ I e. W ) -> ( ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) <-> ( { f , g } C_ ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) ) ) |
| 15 | fvconst2g | |- ( ( R e. V /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
|
| 16 | 15 | ad4ant14 | |- ( ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
| 17 | 16 | fveq2d | |- ( ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( le ` ( ( I X. { R } ) ` x ) ) = ( le ` R ) ) |
| 18 | 17 3 | eqtr4di | |- ( ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( le ` ( ( I X. { R } ) ` x ) ) = O ) |
| 19 | 18 | breqd | |- ( ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) <-> ( f ` x ) O ( g ` x ) ) ) |
| 20 | 19 | ralbidva | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> ( A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) <-> A. x e. I ( f ` x ) O ( g ` x ) ) ) |
| 21 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 22 | simpll | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> R e. V ) |
|
| 23 | simplr | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> I e. W ) |
|
| 24 | simprl | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> f e. B ) |
|
| 25 | 1 21 2 22 23 24 | pwselbas | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> f : I --> ( Base ` R ) ) |
| 26 | 25 | ffnd | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> f Fn I ) |
| 27 | simprr | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> g e. B ) |
|
| 28 | 1 21 2 22 23 27 | pwselbas | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> g : I --> ( Base ` R ) ) |
| 29 | 28 | ffnd | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> g Fn I ) |
| 30 | inidm | |- ( I i^i I ) = I |
|
| 31 | eqidd | |- ( ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( f ` x ) = ( f ` x ) ) |
|
| 32 | eqidd | |- ( ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( g ` x ) = ( g ` x ) ) |
|
| 33 | 26 29 24 27 30 31 32 | ofrfvalg | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> ( f oR O g <-> A. x e. I ( f ` x ) O ( g ` x ) ) ) |
| 34 | 20 33 | bitr4d | |- ( ( ( R e. V /\ I e. W ) /\ ( f e. B /\ g e. B ) ) -> ( A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) <-> f oR O g ) ) |
| 35 | 34 | pm5.32da | |- ( ( R e. V /\ I e. W ) -> ( ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) <-> ( ( f e. B /\ g e. B ) /\ f oR O g ) ) ) |
| 36 | brinxp2 | |- ( f ( oR O i^i ( B X. B ) ) g <-> ( ( f e. B /\ g e. B ) /\ f oR O g ) ) |
|
| 37 | 35 36 | bitr4di | |- ( ( R e. V /\ I e. W ) -> ( ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) <-> f ( oR O i^i ( B X. B ) ) g ) ) |
| 38 | 14 37 | bitr3d | |- ( ( R e. V /\ I e. W ) -> ( ( { f , g } C_ ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) <-> f ( oR O i^i ( B X. B ) ) g ) ) |
| 39 | 38 | opabbidv | |- ( ( R e. V /\ I e. W ) -> { <. f , g >. | ( { f , g } C_ ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) } = { <. f , g >. | f ( oR O i^i ( B X. B ) ) g } ) |
| 40 | 9 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( le ` Y ) = ( le ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 41 | 4 40 | eqtrid | |- ( ( R e. V /\ I e. W ) -> .<_ = ( le ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 42 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 43 | fvexd | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` R ) e. _V ) |
|
| 44 | simpr | |- ( ( R e. V /\ I e. W ) -> I e. W ) |
|
| 45 | snex | |- { R } e. _V |
|
| 46 | xpexg | |- ( ( I e. W /\ { R } e. _V ) -> ( I X. { R } ) e. _V ) |
|
| 47 | 44 45 46 | sylancl | |- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) e. _V ) |
| 48 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 49 | snnzg | |- ( R e. V -> { R } =/= (/) ) |
|
| 50 | 49 | adantr | |- ( ( R e. V /\ I e. W ) -> { R } =/= (/) ) |
| 51 | dmxp | |- ( { R } =/= (/) -> dom ( I X. { R } ) = I ) |
|
| 52 | 50 51 | syl | |- ( ( R e. V /\ I e. W ) -> dom ( I X. { R } ) = I ) |
| 53 | eqid | |- ( le ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( le ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 54 | 42 43 47 48 52 53 | prdsle | |- ( ( R e. V /\ I e. W ) -> ( le ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = { <. f , g >. | ( { f , g } C_ ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) } ) |
| 55 | 41 54 | eqtrd | |- ( ( R e. V /\ I e. W ) -> .<_ = { <. f , g >. | ( { f , g } C_ ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) /\ A. x e. I ( f ` x ) ( le ` ( ( I X. { R } ) ` x ) ) ( g ` x ) ) } ) |
| 56 | relinxp | |- Rel ( oR O i^i ( B X. B ) ) |
|
| 57 | 56 | a1i | |- ( ( R e. V /\ I e. W ) -> Rel ( oR O i^i ( B X. B ) ) ) |
| 58 | dfrel4v | |- ( Rel ( oR O i^i ( B X. B ) ) <-> ( oR O i^i ( B X. B ) ) = { <. f , g >. | f ( oR O i^i ( B X. B ) ) g } ) |
|
| 59 | 57 58 | sylib | |- ( ( R e. V /\ I e. W ) -> ( oR O i^i ( B X. B ) ) = { <. f , g >. | f ( oR O i^i ( B X. B ) ) g } ) |
| 60 | 39 55 59 | 3eqtr4d | |- ( ( R e. V /\ I e. W ) -> .<_ = ( oR O i^i ( B X. B ) ) ) |