This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| elptr2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| elptr2.2 | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) | ||
| elptr2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) ) | ||
| elptr2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝑆 = ∪ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | elptr2 | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 2 | elptr2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | elptr2.2 | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) | |
| 4 | elptr2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) ) | |
| 5 | elptr2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝑆 = ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) | |
| 8 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ) | |
| 9 | 6 7 8 | cbvixp | ⊢ X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 11 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) | |
| 12 | 11 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = 𝑆 ) |
| 13 | 10 4 12 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = 𝑆 ) |
| 14 | 13 | ixpeq2dva | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = X 𝑘 ∈ 𝐴 𝑆 ) |
| 15 | 9 14 | eqtrid | ⊢ ( 𝜑 → X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 𝑆 ) |
| 16 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 17 | 11 | fnmpt | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ∈ ( 𝐹 ‘ 𝑘 ) → ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) Fn 𝐴 ) |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) Fn 𝐴 ) |
| 19 | 13 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 20 | 19 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 21 | 6 | nfel1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) |
| 22 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) | |
| 23 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 24 | 8 23 | eleq12d | ⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) ) |
| 25 | 21 22 24 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 26 | 20 25 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 27 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) → 𝑘 ∈ 𝐴 ) | |
| 28 | 27 13 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = 𝑆 ) |
| 29 | 28 5 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 31 | 6 | nfeq1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) |
| 32 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) | |
| 33 | 23 | unieqd | ⊢ ( 𝑦 = 𝑘 → ∪ ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 34 | 8 33 | eqeq12d | ⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 35 | 31 32 34 | cbvralw | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 36 | 30 35 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 37 | 1 | elptr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑊 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑊 ) ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 38 | 2 18 26 3 36 37 | syl122anc | ⊢ ( 𝜑 → X 𝑦 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 39 | 15 38 | eqeltrrd | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ∈ 𝐵 ) |