This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 12-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthdepisspth | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) | |
| 2 | simplll | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 3 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 4 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 6 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | 7 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 9 | 3 8 | syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 10 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 11 | simpllr | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 12 | simpr | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | |
| 13 | 10 11 12 | 3jca | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 14 | simplr | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) | |
| 15 | injresinj | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → Fun ◡ 𝑃 ) ) ) | |
| 16 | 6 13 14 15 | syl3c | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → Fun ◡ 𝑃 ) |
| 17 | 2 16 | jca | ⊢ ( ( ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
| 18 | 17 | ex3 | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
| 19 | 1 18 | sylbi | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
| 21 | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |