This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 12-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthdepisspth | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> F ( SPaths ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
|
| 2 | simplll | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> F ( Trails ` G ) P ) |
|
| 3 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 4 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 5 | 3 4 | syl | |- ( F ( Trails ` G ) P -> ( # ` F ) e. NN0 ) |
| 6 | 5 | ad3antrrr | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( # ` F ) e. NN0 ) |
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | 7 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 9 | 3 8 | syl | |- ( F ( Trails ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 10 | 9 | ad3antrrr | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 11 | simpllr | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
|
| 12 | simpr | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
|
| 13 | 10 11 12 | 3jca | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 14 | simplr | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
|
| 15 | injresinj | |- ( ( # ` F ) e. NN0 -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> Fun `' P ) ) ) |
|
| 16 | 6 13 14 15 | syl3c | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) |
| 17 | 2 16 | jca | |- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
| 18 | 17 | ex3 | |- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) ) |
| 19 | 1 18 | sylbi | |- ( F ( Paths ` G ) P -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) ) |
| 20 | 19 | imp | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
| 21 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 22 | 20 21 | sylibr | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> F ( SPaths ` G ) P ) |