This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if ~P ~P X is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp ). (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcmpg.1 | |- J = ( Xt_ ` F ) |
|
| ptcmpg.2 | |- X = U. J |
||
| Assertion | ptcmpg | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> J e. Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmpg.1 | |- J = ( Xt_ ` F ) |
|
| 2 | ptcmpg.2 | |- X = U. J |
|
| 3 | nfcv | |- F/_ k ( F ` a ) |
|
| 4 | nfcv | |- F/_ a ( F ` k ) |
|
| 5 | nfcv | |- F/_ k ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) |
|
| 6 | nfcv | |- F/_ u ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) |
|
| 7 | nfcv | |- F/_ a ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) |
|
| 8 | nfcv | |- F/_ b ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) |
|
| 9 | fveq2 | |- ( a = k -> ( F ` a ) = ( F ` k ) ) |
|
| 10 | fveq2 | |- ( a = k -> ( w ` a ) = ( w ` k ) ) |
|
| 11 | 10 | mpteq2dv | |- ( a = k -> ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) = ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) ) |
| 12 | 11 | cnveqd | |- ( a = k -> `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) = `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) ) |
| 13 | 12 | imaeq1d | |- ( a = k -> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) = ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " b ) ) |
| 14 | imaeq2 | |- ( b = u -> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " b ) = ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) ) |
|
| 15 | 13 14 | sylan9eq | |- ( ( a = k /\ b = u ) -> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) = ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) ) |
| 16 | 3 4 5 6 7 8 9 15 | cbvmpox | |- ( a e. A , b e. ( F ` a ) |-> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) ) = ( k e. A , u e. ( F ` k ) |-> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) ) |
| 17 | fveq2 | |- ( n = m -> ( F ` n ) = ( F ` m ) ) |
|
| 18 | 17 | unieqd | |- ( n = m -> U. ( F ` n ) = U. ( F ` m ) ) |
| 19 | 18 | cbvixpv | |- X_ n e. A U. ( F ` n ) = X_ m e. A U. ( F ` m ) |
| 20 | simp1 | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> A e. V ) |
|
| 21 | simp2 | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> F : A --> Comp ) |
|
| 22 | cmptop | |- ( k e. Comp -> k e. Top ) |
|
| 23 | 22 | ssriv | |- Comp C_ Top |
| 24 | fss | |- ( ( F : A --> Comp /\ Comp C_ Top ) -> F : A --> Top ) |
|
| 25 | 21 23 24 | sylancl | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> F : A --> Top ) |
| 26 | 1 | ptuni | |- ( ( A e. V /\ F : A --> Top ) -> X_ n e. A U. ( F ` n ) = U. J ) |
| 27 | 20 25 26 | syl2anc | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X_ n e. A U. ( F ` n ) = U. J ) |
| 28 | 27 2 | eqtr4di | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X_ n e. A U. ( F ` n ) = X ) |
| 29 | simp3 | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X e. ( UFL i^i dom card ) ) |
|
| 30 | 28 29 | eqeltrd | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X_ n e. A U. ( F ` n ) e. ( UFL i^i dom card ) ) |
| 31 | 16 19 20 21 30 | ptcmplem5 | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> ( Xt_ ` F ) e. Comp ) |
| 32 | 1 31 | eqeltrid | |- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> J e. Comp ) |