This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcls.2 | |- J = ( Xt_ ` ( k e. A |-> R ) ) |
|
| ptcls.a | |- ( ph -> A e. V ) |
||
| ptcls.j | |- ( ( ph /\ k e. A ) -> R e. ( TopOn ` X ) ) |
||
| ptcls.c | |- ( ( ph /\ k e. A ) -> S C_ X ) |
||
| Assertion | ptcls | |- ( ph -> ( ( cls ` J ) ` X_ k e. A S ) = X_ k e. A ( ( cls ` R ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcls.2 | |- J = ( Xt_ ` ( k e. A |-> R ) ) |
|
| 2 | ptcls.a | |- ( ph -> A e. V ) |
|
| 3 | ptcls.j | |- ( ( ph /\ k e. A ) -> R e. ( TopOn ` X ) ) |
|
| 4 | ptcls.c | |- ( ( ph /\ k e. A ) -> S C_ X ) |
|
| 5 | toponmax | |- ( R e. ( TopOn ` X ) -> X e. R ) |
|
| 6 | 3 5 | syl | |- ( ( ph /\ k e. A ) -> X e. R ) |
| 7 | 6 4 | ssexd | |- ( ( ph /\ k e. A ) -> S e. _V ) |
| 8 | 7 | ralrimiva | |- ( ph -> A. k e. A S e. _V ) |
| 9 | iunexg | |- ( ( A e. V /\ A. k e. A S e. _V ) -> U_ k e. A S e. _V ) |
|
| 10 | 2 8 9 | syl2anc | |- ( ph -> U_ k e. A S e. _V ) |
| 11 | axac3 | |- CHOICE |
|
| 12 | acacni | |- ( ( CHOICE /\ A e. V ) -> AC_ A = _V ) |
|
| 13 | 11 2 12 | sylancr | |- ( ph -> AC_ A = _V ) |
| 14 | 10 13 | eleqtrrd | |- ( ph -> U_ k e. A S e. AC_ A ) |
| 15 | 1 2 3 4 14 | ptclsg | |- ( ph -> ( ( cls ` J ) ` X_ k e. A S ) = X_ k e. A ( ( cls ` R ) ` S ) ) |