This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The analogue of " X <_ F implies X + G <_ F + G " (compare leadd1d ) for bags. (Contributed by SN, 2-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| psrbagconf1o.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | ||
| psrbagleadd1.t | ⊢ 𝑇 = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∘r ≤ ( 𝐹 ∘f + 𝐺 ) } | ||
| Assertion | psrbagleadd1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∘f + 𝐺 ) ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | psrbagconf1o.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | |
| 3 | psrbagleadd1.t | ⊢ 𝑇 = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∘r ≤ ( 𝐹 ∘f + 𝐺 ) } | |
| 4 | elrabi | ⊢ ( 𝑋 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } → 𝑋 ∈ 𝐷 ) | |
| 5 | 4 2 | eleq2s | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐷 ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐷 ) |
| 7 | simp2 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝐺 ∈ 𝐷 ) | |
| 8 | 1 | psrbagaddcl | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 𝑋 ∘f + 𝐺 ) ∈ 𝐷 ) |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∘f + 𝐺 ) ∈ 𝐷 ) |
| 10 | 1 | psrbagf | ⊢ ( 𝑋 ∈ 𝐷 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 11 | 6 10 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℕ0 ) |
| 13 | 12 | nn0red | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℝ ) |
| 14 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℕ0 ) |
| 17 | 16 | nn0red | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 18 | 1 | psrbagf | ⊢ ( 𝐺 ∈ 𝐷 → 𝐺 : 𝐼 ⟶ ℕ0 ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝐺 : 𝐼 ⟶ ℕ0 ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℕ0 ) |
| 21 | 20 | nn0red | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 22 | breq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∘r ≤ 𝐹 ↔ 𝑋 ∘r ≤ 𝐹 ) ) | |
| 23 | 22 2 | elrab2 | ⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹 ) ) |
| 24 | 23 | simprbi | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∘r ≤ 𝐹 ) |
| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∘r ≤ 𝐹 ) |
| 26 | 10 | ffnd | ⊢ ( 𝑋 ∈ 𝐷 → 𝑋 Fn 𝐼 ) |
| 27 | 5 26 | syl | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 Fn 𝐼 ) |
| 28 | 27 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 Fn 𝐼 ) |
| 29 | 14 | ffnd | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼 ) |
| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝐹 Fn 𝐼 ) |
| 31 | id | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷 ) | |
| 32 | 31 29 | fndmexd | ⊢ ( 𝐹 ∈ 𝐷 → 𝐼 ∈ V ) |
| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝐼 ∈ V ) |
| 34 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 35 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑥 ) ) | |
| 36 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 37 | 28 30 33 33 34 35 36 | ofrfval | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 25 37 | mpbid | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 39 | 38 | r19.21bi | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 40 | 13 17 21 39 | leadd1dd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 41 | 40 | ralrimiva | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑋 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 42 | 1 | psrbagf | ⊢ ( ( 𝑋 ∘f + 𝐺 ) ∈ 𝐷 → ( 𝑋 ∘f + 𝐺 ) : 𝐼 ⟶ ℕ0 ) |
| 43 | 42 | ffnd | ⊢ ( ( 𝑋 ∘f + 𝐺 ) ∈ 𝐷 → ( 𝑋 ∘f + 𝐺 ) Fn 𝐼 ) |
| 44 | 9 43 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∘f + 𝐺 ) Fn 𝐼 ) |
| 45 | 1 | psrbagaddcl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 ) |
| 46 | 45 | 3adant3 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 ) |
| 47 | 1 | psrbagf | ⊢ ( ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 → ( 𝐹 ∘f + 𝐺 ) : 𝐼 ⟶ ℕ0 ) |
| 48 | 47 | ffnd | ⊢ ( ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 → ( 𝐹 ∘f + 𝐺 ) Fn 𝐼 ) |
| 49 | 46 48 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ∘f + 𝐺 ) Fn 𝐼 ) |
| 50 | 18 | ffnd | ⊢ ( 𝐺 ∈ 𝐷 → 𝐺 Fn 𝐼 ) |
| 51 | 50 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝐺 Fn 𝐼 ) |
| 52 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 53 | 28 51 33 33 34 35 52 | ofval | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝑋 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 54 | 30 51 33 33 34 36 52 | ofval | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 55 | 44 49 33 33 34 53 54 | ofrfval | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝑋 ∘f + 𝐺 ) ∘r ≤ ( 𝐹 ∘f + 𝐺 ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑋 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 56 | 41 55 | mpbird | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∘f + 𝐺 ) ∘r ≤ ( 𝐹 ∘f + 𝐺 ) ) |
| 57 | breq1 | ⊢ ( 𝑧 = ( 𝑋 ∘f + 𝐺 ) → ( 𝑧 ∘r ≤ ( 𝐹 ∘f + 𝐺 ) ↔ ( 𝑋 ∘f + 𝐺 ) ∘r ≤ ( 𝐹 ∘f + 𝐺 ) ) ) | |
| 58 | 57 3 | elrab2 | ⊢ ( ( 𝑋 ∘f + 𝐺 ) ∈ 𝑇 ↔ ( ( 𝑋 ∘f + 𝐺 ) ∈ 𝐷 ∧ ( 𝑋 ∘f + 𝐺 ) ∘r ≤ ( 𝐹 ∘f + 𝐺 ) ) ) |
| 59 | 9 56 58 | sylanbrc | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∘f + 𝐺 ) ∈ 𝑇 ) |