This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The analogue of " X <_ F implies X + G <_ F + G " (compare leadd1d ) for bags. (Contributed by SN, 2-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| psrbagconf1o.s | |- S = { y e. D | y oR <_ F } |
||
| psrbagleadd1.t | |- T = { z e. D | z oR <_ ( F oF + G ) } |
||
| Assertion | psrbagleadd1 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( X oF + G ) e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | psrbagconf1o.s | |- S = { y e. D | y oR <_ F } |
|
| 3 | psrbagleadd1.t | |- T = { z e. D | z oR <_ ( F oF + G ) } |
|
| 4 | elrabi | |- ( X e. { y e. D | y oR <_ F } -> X e. D ) |
|
| 5 | 4 2 | eleq2s | |- ( X e. S -> X e. D ) |
| 6 | 5 | 3ad2ant3 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> X e. D ) |
| 7 | simp2 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> G e. D ) |
|
| 8 | 1 | psrbagaddcl | |- ( ( X e. D /\ G e. D ) -> ( X oF + G ) e. D ) |
| 9 | 6 7 8 | syl2anc | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( X oF + G ) e. D ) |
| 10 | 1 | psrbagf | |- ( X e. D -> X : I --> NN0 ) |
| 11 | 6 10 | syl | |- ( ( F e. D /\ G e. D /\ X e. S ) -> X : I --> NN0 ) |
| 12 | 11 | ffvelcdmda | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( X ` x ) e. NN0 ) |
| 13 | 12 | nn0red | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( X ` x ) e. RR ) |
| 14 | 1 | psrbagf | |- ( F e. D -> F : I --> NN0 ) |
| 15 | 14 | 3ad2ant1 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> F : I --> NN0 ) |
| 16 | 15 | ffvelcdmda | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( F ` x ) e. NN0 ) |
| 17 | 16 | nn0red | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( F ` x ) e. RR ) |
| 18 | 1 | psrbagf | |- ( G e. D -> G : I --> NN0 ) |
| 19 | 18 | 3ad2ant2 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> G : I --> NN0 ) |
| 20 | 19 | ffvelcdmda | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( G ` x ) e. NN0 ) |
| 21 | 20 | nn0red | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( G ` x ) e. RR ) |
| 22 | breq1 | |- ( y = X -> ( y oR <_ F <-> X oR <_ F ) ) |
|
| 23 | 22 2 | elrab2 | |- ( X e. S <-> ( X e. D /\ X oR <_ F ) ) |
| 24 | 23 | simprbi | |- ( X e. S -> X oR <_ F ) |
| 25 | 24 | 3ad2ant3 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> X oR <_ F ) |
| 26 | 10 | ffnd | |- ( X e. D -> X Fn I ) |
| 27 | 5 26 | syl | |- ( X e. S -> X Fn I ) |
| 28 | 27 | 3ad2ant3 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> X Fn I ) |
| 29 | 14 | ffnd | |- ( F e. D -> F Fn I ) |
| 30 | 29 | 3ad2ant1 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> F Fn I ) |
| 31 | id | |- ( F e. D -> F e. D ) |
|
| 32 | 31 29 | fndmexd | |- ( F e. D -> I e. _V ) |
| 33 | 32 | 3ad2ant1 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> I e. _V ) |
| 34 | inidm | |- ( I i^i I ) = I |
|
| 35 | eqidd | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( X ` x ) = ( X ` x ) ) |
|
| 36 | eqidd | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( F ` x ) = ( F ` x ) ) |
|
| 37 | 28 30 33 33 34 35 36 | ofrfval | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( X oR <_ F <-> A. x e. I ( X ` x ) <_ ( F ` x ) ) ) |
| 38 | 25 37 | mpbid | |- ( ( F e. D /\ G e. D /\ X e. S ) -> A. x e. I ( X ` x ) <_ ( F ` x ) ) |
| 39 | 38 | r19.21bi | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( X ` x ) <_ ( F ` x ) ) |
| 40 | 13 17 21 39 | leadd1dd | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( ( X ` x ) + ( G ` x ) ) <_ ( ( F ` x ) + ( G ` x ) ) ) |
| 41 | 40 | ralrimiva | |- ( ( F e. D /\ G e. D /\ X e. S ) -> A. x e. I ( ( X ` x ) + ( G ` x ) ) <_ ( ( F ` x ) + ( G ` x ) ) ) |
| 42 | 1 | psrbagf | |- ( ( X oF + G ) e. D -> ( X oF + G ) : I --> NN0 ) |
| 43 | 42 | ffnd | |- ( ( X oF + G ) e. D -> ( X oF + G ) Fn I ) |
| 44 | 9 43 | syl | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( X oF + G ) Fn I ) |
| 45 | 1 | psrbagaddcl | |- ( ( F e. D /\ G e. D ) -> ( F oF + G ) e. D ) |
| 46 | 45 | 3adant3 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( F oF + G ) e. D ) |
| 47 | 1 | psrbagf | |- ( ( F oF + G ) e. D -> ( F oF + G ) : I --> NN0 ) |
| 48 | 47 | ffnd | |- ( ( F oF + G ) e. D -> ( F oF + G ) Fn I ) |
| 49 | 46 48 | syl | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( F oF + G ) Fn I ) |
| 50 | 18 | ffnd | |- ( G e. D -> G Fn I ) |
| 51 | 50 | 3ad2ant2 | |- ( ( F e. D /\ G e. D /\ X e. S ) -> G Fn I ) |
| 52 | eqidd | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( G ` x ) = ( G ` x ) ) |
|
| 53 | 28 51 33 33 34 35 52 | ofval | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( ( X oF + G ) ` x ) = ( ( X ` x ) + ( G ` x ) ) ) |
| 54 | 30 51 33 33 34 36 52 | ofval | |- ( ( ( F e. D /\ G e. D /\ X e. S ) /\ x e. I ) -> ( ( F oF + G ) ` x ) = ( ( F ` x ) + ( G ` x ) ) ) |
| 55 | 44 49 33 33 34 53 54 | ofrfval | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( ( X oF + G ) oR <_ ( F oF + G ) <-> A. x e. I ( ( X ` x ) + ( G ` x ) ) <_ ( ( F ` x ) + ( G ` x ) ) ) ) |
| 56 | 41 55 | mpbird | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( X oF + G ) oR <_ ( F oF + G ) ) |
| 57 | breq1 | |- ( z = ( X oF + G ) -> ( z oR <_ ( F oF + G ) <-> ( X oF + G ) oR <_ ( F oF + G ) ) ) |
|
| 58 | 57 3 | elrab2 | |- ( ( X oF + G ) e. T <-> ( ( X oF + G ) e. D /\ ( X oF + G ) oR <_ ( F oF + G ) ) ) |
| 59 | 9 56 58 | sylanbrc | |- ( ( F e. D /\ G e. D /\ X e. S ) -> ( X oF + G ) e. T ) |