This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| psr0cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psr0cl.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psr0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psr0lid.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| psr0lid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | psr0lid | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 4 | psr0cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psr0cl.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | psr0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psr0lid.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 8 | psr0lid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 10 | 1 2 3 4 5 6 | psr0cl | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |
| 11 | 1 6 9 7 10 8 | psradd | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = ( ( 𝐷 × { 0 } ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 12 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 13 | 4 12 | rabex2 | ⊢ 𝐷 ∈ V |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | 1 15 4 6 8 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 5 | fvexi | ⊢ 0 ∈ V |
| 18 | 17 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 19 | 15 9 5 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 20 | 3 19 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 21 | 14 16 18 20 | caofid0l | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
| 22 | 11 21 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = 𝑋 ) |