This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfix.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| psgnfix.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | ||
| psgnfix.s | ⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | ||
| psgnfix.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) | ||
| psgnfix.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | psgnfix2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | psgnfix.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 3 | psgnfix.s | ⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 4 | psgnfix.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) | |
| 5 | psgnfix.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 6 | elrabi | ⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 ∈ 𝑃 ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → 𝑄 ∈ 𝑃 ) |
| 8 | 4 | fveq2i | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 9 | 1 8 | eqtr4i | ⊢ 𝑃 = ( Base ‘ 𝑍 ) |
| 10 | 4 9 5 | psgnfitr | ⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 ↔ ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ) ) |
| 11 | 10 | bicomd | ⊢ ( 𝑁 ∈ Fin → ( ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ↔ 𝑄 ∈ 𝑃 ) ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ↔ 𝑄 ∈ 𝑃 ) ) |
| 13 | 7 12 | mpbird | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ) ) |