This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prstcnid and prstchomval . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| prstcnid.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| prstcnid.no | ⊢ ( 𝐸 ‘ ndx ) ≠ ( comp ‘ ndx ) | ||
| Assertion | prstcnidlem | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝐶 ) = ( 𝐸 ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | prstcnid.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 4 | prstcnid.no | ⊢ ( 𝐸 ‘ ndx ) ≠ ( comp ‘ ndx ) | |
| 5 | 1 2 | prstcval | ⊢ ( 𝜑 → 𝐶 = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝐶 ) = ( 𝐸 ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) ) |
| 7 | 3 4 | setsnid | ⊢ ( 𝐸 ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| 8 | 6 7 | eqtr4di | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝐶 ) = ( 𝐸 ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |