This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for product, with the class expressions B and C guarded by _I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prodeq2ii | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑛 ∈ ℤ ) | |
| 2 | 1 | adantl | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑛 ∈ ℤ ) |
| 3 | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) | |
| 4 | rsp | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( 𝑘 ∈ 𝐴 → ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) ) | |
| 5 | 4 | adantr | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 → ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) ) |
| 6 | ifeq1 | ⊢ ( ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐵 ) , ( I ‘ 1 ) ) = if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐶 ) , ( I ‘ 1 ) ) ) | |
| 7 | 5 6 | syl6 | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐵 ) , ( I ‘ 1 ) ) = if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐶 ) , ( I ‘ 1 ) ) ) ) |
| 8 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐵 ) , ( I ‘ 1 ) ) = ( I ‘ 1 ) ) | |
| 9 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐶 ) , ( I ‘ 1 ) ) = ( I ‘ 1 ) ) | |
| 10 | 8 9 | eqtr4d | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐵 ) , ( I ‘ 1 ) ) = if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐶 ) , ( I ‘ 1 ) ) ) |
| 11 | 7 10 | pm2.61d1 | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑘 ∈ ℤ ) → if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐵 ) , ( I ‘ 1 ) ) = if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐶 ) , ( I ‘ 1 ) ) ) |
| 12 | fvif | ⊢ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐵 ) , ( I ‘ 1 ) ) | |
| 13 | fvif | ⊢ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) = if ( 𝑘 ∈ 𝐴 , ( I ‘ 𝐶 ) , ( I ‘ 1 ) ) | |
| 14 | 11 12 13 | 3eqtr4g | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑘 ∈ ℤ ) → ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) |
| 15 | 3 14 | mpteq2da | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ) |
| 17 | 16 | fveq1d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ‘ 𝑥 ) ) |
| 18 | 17 | adantlr | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ‘ 𝑥 ) ) |
| 19 | eqid | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 20 | eqid | ⊢ ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) | |
| 21 | 19 20 | fvmptex | ⊢ ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑥 ) |
| 22 | eqid | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) | |
| 23 | eqid | ⊢ ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) = ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) | |
| 24 | 22 23 | fvmptex | ⊢ ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ‘ 𝑥 ) |
| 25 | 18 21 24 | 3eqtr4g | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ‘ 𝑥 ) ) |
| 26 | 2 25 | seqfeq | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ) |
| 27 | 26 | breq1d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ↔ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 28 | 27 | anbi2d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
| 29 | 28 | exbidv | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
| 30 | 29 | rexbidva | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
| 32 | simpr | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) | |
| 33 | 15 | adantr | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ) |
| 34 | 33 | fveq1d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ ( I ‘ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ‘ 𝑥 ) ) |
| 35 | 34 21 24 | 3eqtr4g | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ‘ 𝑥 ) ) |
| 36 | 35 | adantlr | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ‘ 𝑥 ) ) |
| 37 | 32 36 | seqfeq | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ) |
| 38 | 37 | breq1d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ) |
| 39 | 31 38 | 3anbi23d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ) ) |
| 40 | 39 | rexbidva | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ) ) |
| 41 | simplr | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝑚 ∈ ℕ ) | |
| 42 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 43 | 41 42 | eleqtrdi | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
| 44 | f1of | ⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... 𝑚 ) ⟶ 𝐴 ) | |
| 45 | 44 | ad2antlr | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → 𝑓 : ( 1 ... 𝑚 ) ⟶ 𝐴 ) |
| 46 | ffvelcdm | ⊢ ( ( 𝑓 : ( 1 ... 𝑚 ) ⟶ 𝐴 ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) | |
| 47 | 45 46 | sylancom | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) |
| 48 | simplll | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) | |
| 49 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) | |
| 50 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) | |
| 51 | 49 50 | nfeq | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) |
| 52 | csbeq1a | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) ) | |
| 53 | csbeq1a | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( I ‘ 𝐶 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) | |
| 54 | 52 53 | eqeq12d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ↔ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) ) |
| 55 | 51 54 | rspc | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) ) |
| 56 | 47 48 55 | sylc | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) |
| 57 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 58 | csbfv2g | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) ) | |
| 59 | 57 58 | ax-mp | ⊢ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 60 | csbfv2g | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) | |
| 61 | 57 60 | ax-mp | ⊢ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) |
| 62 | 56 59 61 | 3eqtr3g | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) |
| 63 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... 𝑚 ) → 𝑥 ∈ ℕ ) | |
| 64 | 63 | adantl | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → 𝑥 ∈ ℕ ) |
| 65 | fveq2 | ⊢ ( 𝑛 = 𝑥 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 66 | 65 | csbeq1d | ⊢ ( 𝑛 = 𝑥 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 67 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) | |
| 68 | 66 67 | fvmpti | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) ) |
| 69 | 64 68 | syl | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) ) |
| 70 | 65 | csbeq1d | ⊢ ( 𝑛 = 𝑥 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) |
| 71 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) | |
| 72 | 70 71 | fvmpti | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) |
| 73 | 64 72 | syl | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) |
| 74 | 62 69 73 | 3eqtr4d | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ‘ 𝑥 ) ) |
| 75 | 43 74 | seqfveq | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) |
| 76 | 75 | eqeq2d | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
| 77 | 76 | pm5.32da | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 78 | 77 | exbidv | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 79 | 78 | rexbidva | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 80 | 40 79 | orbi12d | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) |
| 81 | 80 | iotabidv | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) |
| 82 | df-prod | ⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | |
| 83 | df-prod | ⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | |
| 84 | 81 82 83 | 3eqtr4g | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 ) |