This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each integer greater than 1 and less than or equal to a fixed number is divisible by a prime less than or equal to this fixed number. (Contributed by AV, 15-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsfz | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime ( p <_ N /\ p || I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | |- ( I e. ( 2 ... N ) -> I e. ( ZZ>= ` 2 ) ) |
|
| 2 | 1 | adantl | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. ( ZZ>= ` 2 ) ) |
| 3 | exprmfct | |- ( I e. ( ZZ>= ` 2 ) -> E. p e. Prime p || I ) |
|
| 4 | 2 3 | syl | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime p || I ) |
| 5 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 6 | eluz2nn | |- ( I e. ( ZZ>= ` 2 ) -> I e. NN ) |
|
| 7 | 1 6 | syl | |- ( I e. ( 2 ... N ) -> I e. NN ) |
| 8 | 7 | adantl | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> I e. NN ) |
| 9 | dvdsle | |- ( ( p e. ZZ /\ I e. NN ) -> ( p || I -> p <_ I ) ) |
|
| 10 | 5 8 9 | syl2anr | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( p || I -> p <_ I ) ) |
| 11 | elfzle2 | |- ( I e. ( 2 ... N ) -> I <_ N ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> I <_ N ) |
| 13 | 5 | zred | |- ( p e. Prime -> p e. RR ) |
| 14 | 13 | adantl | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> p e. RR ) |
| 15 | elfzelz | |- ( I e. ( 2 ... N ) -> I e. ZZ ) |
|
| 16 | 15 | zred | |- ( I e. ( 2 ... N ) -> I e. RR ) |
| 17 | 16 | ad2antlr | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> I e. RR ) |
| 18 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> N e. RR ) |
| 20 | letr | |- ( ( p e. RR /\ I e. RR /\ N e. RR ) -> ( ( p <_ I /\ I <_ N ) -> p <_ N ) ) |
|
| 21 | 14 17 19 20 | syl3anc | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( ( p <_ I /\ I <_ N ) -> p <_ N ) ) |
| 22 | 12 21 | mpan2d | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( p <_ I -> p <_ N ) ) |
| 23 | 10 22 | syld | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( p || I -> p <_ N ) ) |
| 24 | 23 | ancrd | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( p || I -> ( p <_ N /\ p || I ) ) ) |
| 25 | 24 | reximdva | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. p e. Prime p || I -> E. p e. Prime ( p <_ N /\ p || I ) ) ) |
| 26 | 4 25 | mpd | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime ( p <_ N /\ p || I ) ) |