This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prneimg | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12bg | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 2 | orddi | ⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) ) | |
| 3 | simpll | ⊢ ( ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) → ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) | |
| 4 | pm1.4 | ⊢ ( ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) → ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) | |
| 5 | 4 | ad2antll | ⊢ ( ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) → ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
| 6 | 3 5 | jca | ⊢ ( ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐴 = 𝐶 ∨ 𝐵 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐷 ∨ 𝐵 = 𝐶 ) ) ) → ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
| 7 | 2 6 | sylbi | ⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
| 8 | 1 7 | biimtrdi | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
| 9 | ianor | ⊢ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ) | |
| 10 | nne | ⊢ ( ¬ 𝐴 ≠ 𝐶 ↔ 𝐴 = 𝐶 ) | |
| 11 | nne | ⊢ ( ¬ 𝐴 ≠ 𝐷 ↔ 𝐴 = 𝐷 ) | |
| 12 | 10 11 | orbi12i | ⊢ ( ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
| 13 | 9 12 | bitr2i | ⊢ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ↔ ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) |
| 14 | ianor | ⊢ ( ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ) | |
| 15 | nne | ⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) | |
| 16 | nne | ⊢ ( ¬ 𝐵 ≠ 𝐷 ↔ 𝐵 = 𝐷 ) | |
| 17 | 15 16 | orbi12i | ⊢ ( ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
| 18 | 14 17 | bitr2i | ⊢ ( ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ↔ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) |
| 19 | 13 18 | anbi12i | ⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ↔ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) |
| 20 | 8 19 | imbitrdi | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) ) |
| 21 | pm4.56 | ⊢ ( ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) | |
| 22 | 20 21 | imbitrdi | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) ) |
| 23 | 22 | necon2ad | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |