This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prdsxms.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| Assertion | prdsms | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsxms.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | msxms | ⊢ ( 𝑥 ∈ MetSp → 𝑥 ∈ ∞MetSp ) | |
| 3 | 2 | ssriv | ⊢ MetSp ⊆ ∞MetSp |
| 4 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ MetSp ∧ MetSp ⊆ ∞MetSp ) → 𝑅 : 𝐼 ⟶ ∞MetSp ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑅 : 𝐼 ⟶ MetSp → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
| 6 | 1 | prdsxms | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑌 ∈ ∞MetSp ) |
| 7 | 5 6 | syl3an3 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ ∞MetSp ) |
| 8 | simp1 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑆 ∈ 𝑊 ) | |
| 9 | simp2 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝐼 ∈ Fin ) | |
| 10 | eqid | ⊢ ( dist ‘ 𝑌 ) = ( dist ‘ 𝑌 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 12 | simp3 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑅 : 𝐼 ⟶ MetSp ) | |
| 13 | 1 8 9 10 11 12 | prdsmslem1 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 14 | ssid | ⊢ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) | |
| 15 | metres2 | ⊢ ( ( ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) | |
| 16 | 13 14 15 | sylancl | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 17 | eqid | ⊢ ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) | |
| 18 | eqid | ⊢ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) | |
| 19 | 17 11 18 | isms | ⊢ ( 𝑌 ∈ MetSp ↔ ( 𝑌 ∈ ∞MetSp ∧ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) ) |
| 20 | 7 16 19 | sylanbrc | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ MetSp ) |