This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsvscacl.y | |- Y = ( S Xs_ R ) |
|
| prdsvscacl.b | |- B = ( Base ` Y ) |
||
| prdsvscacl.t | |- .x. = ( .s ` Y ) |
||
| prdsvscacl.k | |- K = ( Base ` S ) |
||
| prdsvscacl.s | |- ( ph -> S e. Ring ) |
||
| prdsvscacl.i | |- ( ph -> I e. W ) |
||
| prdsvscacl.r | |- ( ph -> R : I --> LMod ) |
||
| prdsvscacl.f | |- ( ph -> F e. K ) |
||
| prdsvscacl.g | |- ( ph -> G e. B ) |
||
| prdsvscacl.sr | |- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
||
| Assertion | prdsvscacl | |- ( ph -> ( F .x. G ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsvscacl.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsvscacl.b | |- B = ( Base ` Y ) |
|
| 3 | prdsvscacl.t | |- .x. = ( .s ` Y ) |
|
| 4 | prdsvscacl.k | |- K = ( Base ` S ) |
|
| 5 | prdsvscacl.s | |- ( ph -> S e. Ring ) |
|
| 6 | prdsvscacl.i | |- ( ph -> I e. W ) |
|
| 7 | prdsvscacl.r | |- ( ph -> R : I --> LMod ) |
|
| 8 | prdsvscacl.f | |- ( ph -> F e. K ) |
|
| 9 | prdsvscacl.g | |- ( ph -> G e. B ) |
|
| 10 | prdsvscacl.sr | |- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
|
| 11 | 7 | ffnd | |- ( ph -> R Fn I ) |
| 12 | 1 2 3 4 5 6 11 8 9 | prdsvscaval | |- ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 13 | 7 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( R ` x ) e. LMod ) |
| 14 | 8 | adantr | |- ( ( ph /\ x e. I ) -> F e. K ) |
| 15 | 10 | fveq2d | |- ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` S ) ) |
| 16 | 15 4 | eqtr4di | |- ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = K ) |
| 17 | 14 16 | eleqtrrd | |- ( ( ph /\ x e. I ) -> F e. ( Base ` ( Scalar ` ( R ` x ) ) ) ) |
| 18 | 5 | adantr | |- ( ( ph /\ x e. I ) -> S e. Ring ) |
| 19 | 6 | adantr | |- ( ( ph /\ x e. I ) -> I e. W ) |
| 20 | 11 | adantr | |- ( ( ph /\ x e. I ) -> R Fn I ) |
| 21 | 9 | adantr | |- ( ( ph /\ x e. I ) -> G e. B ) |
| 22 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 23 | 1 2 18 19 20 21 22 | prdsbasprj | |- ( ( ph /\ x e. I ) -> ( G ` x ) e. ( Base ` ( R ` x ) ) ) |
| 24 | eqid | |- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
|
| 25 | eqid | |- ( Scalar ` ( R ` x ) ) = ( Scalar ` ( R ` x ) ) |
|
| 26 | eqid | |- ( .s ` ( R ` x ) ) = ( .s ` ( R ` x ) ) |
|
| 27 | eqid | |- ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` ( Scalar ` ( R ` x ) ) ) |
|
| 28 | 24 25 26 27 | lmodvscl | |- ( ( ( R ` x ) e. LMod /\ F e. ( Base ` ( Scalar ` ( R ` x ) ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 29 | 13 17 23 28 | syl3anc | |- ( ( ph /\ x e. I ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 31 | 1 2 5 6 11 | prdsbasmpt | |- ( ph -> ( ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B <-> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) ) |
| 32 | 30 31 | mpbird | |- ( ph -> ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B ) |
| 33 | 12 32 | eqeltrd | |- ( ph -> ( F .x. G ) e. B ) |