This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| prdsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| prdsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| prdsdsval.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| Assertion | prdsdsval | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 6 | prdsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | prdsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | prdsdsval.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 9 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ V ) | |
| 10 | 5 4 9 | syl2anc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 11 | fndm | ⊢ ( 𝑅 Fn 𝐼 → dom 𝑅 = 𝐼 ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 13 | 1 3 10 2 12 8 | prdsds | ⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 14 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 15 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 16 | 14 15 | oveqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 18 | 17 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 19 | 18 | rneqd | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 20 | 19 | uneq1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) = ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 21 | 20 | supeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 22 | xrltso | ⊢ < Or ℝ* | |
| 23 | 22 | supex | ⊢ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ V |
| 24 | 23 | a1i | ⊢ ( 𝜑 → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ V ) |
| 25 | 13 21 6 7 24 | ovmpod | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |