This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdscmnd.y | |- Y = ( S Xs_ R ) |
|
| prdscmnd.i | |- ( ph -> I e. W ) |
||
| prdscmnd.s | |- ( ph -> S e. V ) |
||
| prdscmnd.r | |- ( ph -> R : I --> CMnd ) |
||
| Assertion | prdscmnd | |- ( ph -> Y e. CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdscmnd.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdscmnd.i | |- ( ph -> I e. W ) |
|
| 3 | prdscmnd.s | |- ( ph -> S e. V ) |
|
| 4 | prdscmnd.r | |- ( ph -> R : I --> CMnd ) |
|
| 5 | eqidd | |- ( ph -> ( Base ` Y ) = ( Base ` Y ) ) |
|
| 6 | eqidd | |- ( ph -> ( +g ` Y ) = ( +g ` Y ) ) |
|
| 7 | cmnmnd | |- ( a e. CMnd -> a e. Mnd ) |
|
| 8 | 7 | ssriv | |- CMnd C_ Mnd |
| 9 | fss | |- ( ( R : I --> CMnd /\ CMnd C_ Mnd ) -> R : I --> Mnd ) |
|
| 10 | 4 8 9 | sylancl | |- ( ph -> R : I --> Mnd ) |
| 11 | 1 2 3 10 | prdsmndd | |- ( ph -> Y e. Mnd ) |
| 12 | 4 | 3ad2ant1 | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> R : I --> CMnd ) |
| 13 | 12 | ffvelcdmda | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( R ` c ) e. CMnd ) |
| 14 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 15 | 3 | elexd | |- ( ph -> S e. _V ) |
| 16 | 15 | 3ad2ant1 | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> S e. _V ) |
| 17 | 16 | adantr | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> S e. _V ) |
| 18 | 2 | elexd | |- ( ph -> I e. _V ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> I e. _V ) |
| 20 | 19 | adantr | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> I e. _V ) |
| 21 | 4 | ffnd | |- ( ph -> R Fn I ) |
| 22 | 21 | 3ad2ant1 | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> R Fn I ) |
| 23 | 22 | adantr | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> R Fn I ) |
| 24 | simpl2 | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> a e. ( Base ` Y ) ) |
|
| 25 | simpr | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> c e. I ) |
|
| 26 | 1 14 17 20 23 24 25 | prdsbasprj | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( a ` c ) e. ( Base ` ( R ` c ) ) ) |
| 27 | simpl3 | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> b e. ( Base ` Y ) ) |
|
| 28 | 1 14 17 20 23 27 25 | prdsbasprj | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( b ` c ) e. ( Base ` ( R ` c ) ) ) |
| 29 | eqid | |- ( Base ` ( R ` c ) ) = ( Base ` ( R ` c ) ) |
|
| 30 | eqid | |- ( +g ` ( R ` c ) ) = ( +g ` ( R ` c ) ) |
|
| 31 | 29 30 | cmncom | |- ( ( ( R ` c ) e. CMnd /\ ( a ` c ) e. ( Base ` ( R ` c ) ) /\ ( b ` c ) e. ( Base ` ( R ` c ) ) ) -> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) = ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) |
| 32 | 13 26 28 31 | syl3anc | |- ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) = ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) |
| 33 | 32 | mpteq2dva | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( c e. I |-> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) ) = ( c e. I |-> ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) ) |
| 34 | simp2 | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> a e. ( Base ` Y ) ) |
|
| 35 | simp3 | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> b e. ( Base ` Y ) ) |
|
| 36 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 37 | 1 14 16 19 22 34 35 36 | prdsplusgval | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( a ( +g ` Y ) b ) = ( c e. I |-> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) ) ) |
| 38 | 1 14 16 19 22 35 34 36 | prdsplusgval | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( b ( +g ` Y ) a ) = ( c e. I |-> ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) ) |
| 39 | 33 37 38 | 3eqtr4d | |- ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( a ( +g ` Y ) b ) = ( b ( +g ` Y ) a ) ) |
| 40 | 5 6 11 39 | iscmnd | |- ( ph -> Y e. CMnd ) |