This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdscmnd.y | |- Y = ( S Xs_ R ) |
|
| prdscmnd.i | |- ( ph -> I e. W ) |
||
| prdscmnd.s | |- ( ph -> S e. V ) |
||
| prdsgabld.r | |- ( ph -> R : I --> Abel ) |
||
| Assertion | prdsabld | |- ( ph -> Y e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdscmnd.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdscmnd.i | |- ( ph -> I e. W ) |
|
| 3 | prdscmnd.s | |- ( ph -> S e. V ) |
|
| 4 | prdsgabld.r | |- ( ph -> R : I --> Abel ) |
|
| 5 | ablgrp | |- ( a e. Abel -> a e. Grp ) |
|
| 6 | 5 | ssriv | |- Abel C_ Grp |
| 7 | fss | |- ( ( R : I --> Abel /\ Abel C_ Grp ) -> R : I --> Grp ) |
|
| 8 | 4 6 7 | sylancl | |- ( ph -> R : I --> Grp ) |
| 9 | 1 2 3 8 | prdsgrpd | |- ( ph -> Y e. Grp ) |
| 10 | ablcmn | |- ( a e. Abel -> a e. CMnd ) |
|
| 11 | 10 | ssriv | |- Abel C_ CMnd |
| 12 | fss | |- ( ( R : I --> Abel /\ Abel C_ CMnd ) -> R : I --> CMnd ) |
|
| 13 | 4 11 12 | sylancl | |- ( ph -> R : I --> CMnd ) |
| 14 | 1 2 3 13 | prdscmnd | |- ( ph -> Y e. CMnd ) |
| 15 | isabl | |- ( Y e. Abel <-> ( Y e. Grp /\ Y e. CMnd ) ) |
|
| 16 | 9 14 15 | sylanbrc | |- ( ph -> Y e. Abel ) |