This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pr2pwpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝑝 ∈ 𝒫 { 𝐴 , 𝐵 } ∣ 𝑝 ≈ 2o } = { { 𝐴 , 𝐵 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } → 𝑠 ⊆ { 𝐴 , 𝐵 } ) | |
| 2 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 3 | ssfi | ⊢ ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ 𝑠 ⊆ { 𝐴 , 𝐵 } ) → 𝑠 ∈ Fin ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑠 ⊆ { 𝐴 , 𝐵 } → 𝑠 ∈ Fin ) |
| 5 | hash2 | ⊢ ( ♯ ‘ 2o ) = 2 | |
| 6 | 5 | eqcomi | ⊢ 2 = ( ♯ ‘ 2o ) |
| 7 | 6 | a1i | ⊢ ( 𝑠 ∈ Fin → 2 = ( ♯ ‘ 2o ) ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑠 ∈ Fin → ( ( ♯ ‘ 𝑠 ) = 2 ↔ ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 2o ) ) ) |
| 9 | 2onn | ⊢ 2o ∈ ω | |
| 10 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 11 | 9 10 | ax-mp | ⊢ 2o ∈ Fin |
| 12 | hashen | ⊢ ( ( 𝑠 ∈ Fin ∧ 2o ∈ Fin ) → ( ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 2o ) ↔ 𝑠 ≈ 2o ) ) | |
| 13 | 11 12 | mpan2 | ⊢ ( 𝑠 ∈ Fin → ( ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 2o ) ↔ 𝑠 ≈ 2o ) ) |
| 14 | 8 13 | bitrd | ⊢ ( 𝑠 ∈ Fin → ( ( ♯ ‘ 𝑠 ) = 2 ↔ 𝑠 ≈ 2o ) ) |
| 15 | hash2pwpr | ⊢ ( ( ( ♯ ‘ 𝑠 ) = 2 ∧ 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ) → 𝑠 = { 𝐴 , 𝐵 } ) | |
| 16 | 15 | a1d | ⊢ ( ( ( ♯ ‘ 𝑠 ) = 2 ∧ 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝑠 = { 𝐴 , 𝐵 } ) ) |
| 17 | 16 | ex | ⊢ ( ( ♯ ‘ 𝑠 ) = 2 → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝑠 = { 𝐴 , 𝐵 } ) ) ) |
| 18 | 14 17 | biimtrrdi | ⊢ ( 𝑠 ∈ Fin → ( 𝑠 ≈ 2o → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝑠 = { 𝐴 , 𝐵 } ) ) ) ) |
| 19 | 18 | com23 | ⊢ ( 𝑠 ∈ Fin → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } → ( 𝑠 ≈ 2o → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝑠 = { 𝐴 , 𝐵 } ) ) ) ) |
| 20 | 4 19 | syl | ⊢ ( 𝑠 ⊆ { 𝐴 , 𝐵 } → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } → ( 𝑠 ≈ 2o → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝑠 = { 𝐴 , 𝐵 } ) ) ) ) |
| 21 | 1 20 | mpcom | ⊢ ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } → ( 𝑠 ≈ 2o → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝑠 = { 𝐴 , 𝐵 } ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ∧ 𝑠 ≈ 2o ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝑠 = { 𝐴 , 𝐵 } ) ) |
| 23 | 22 | com12 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ∧ 𝑠 ≈ 2o ) → 𝑠 = { 𝐴 , 𝐵 } ) ) |
| 24 | prex | ⊢ { 𝐴 , 𝐵 } ∈ V | |
| 25 | 24 | prid2 | ⊢ { 𝐴 , 𝐵 } ∈ { { 𝐵 } , { 𝐴 , 𝐵 } } |
| 26 | 25 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ { { 𝐵 } , { 𝐴 , 𝐵 } } ) |
| 27 | 26 | olcd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ∈ { ∅ , { 𝐴 } } ∨ { 𝐴 , 𝐵 } ∈ { { 𝐵 } , { 𝐴 , 𝐵 } } ) ) |
| 28 | elun | ⊢ ( { 𝐴 , 𝐵 } ∈ ( { ∅ , { 𝐴 } } ∪ { { 𝐵 } , { 𝐴 , 𝐵 } } ) ↔ ( { 𝐴 , 𝐵 } ∈ { ∅ , { 𝐴 } } ∨ { 𝐴 , 𝐵 } ∈ { { 𝐵 } , { 𝐴 , 𝐵 } } ) ) | |
| 29 | 27 28 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ ( { ∅ , { 𝐴 } } ∪ { { 𝐵 } , { 𝐴 , 𝐵 } } ) ) |
| 30 | pwpr | ⊢ 𝒫 { 𝐴 , 𝐵 } = ( { ∅ , { 𝐴 } } ∪ { { 𝐵 } , { 𝐴 , 𝐵 } } ) | |
| 31 | 29 30 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝒫 { 𝐴 , 𝐵 } ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑠 = { 𝐴 , 𝐵 } ) → { 𝐴 , 𝐵 } ∈ 𝒫 { 𝐴 , 𝐵 } ) |
| 33 | eleq1 | ⊢ ( 𝑠 = { 𝐴 , 𝐵 } → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ↔ { 𝐴 , 𝐵 } ∈ 𝒫 { 𝐴 , 𝐵 } ) ) | |
| 34 | 33 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑠 = { 𝐴 , 𝐵 } ) → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ↔ { 𝐴 , 𝐵 } ∈ 𝒫 { 𝐴 , 𝐵 } ) ) |
| 35 | 32 34 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑠 = { 𝐴 , 𝐵 } ) → 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ) |
| 36 | enpr2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) | |
| 37 | 36 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑠 = { 𝐴 , 𝐵 } ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 38 | breq1 | ⊢ ( 𝑠 = { 𝐴 , 𝐵 } → ( 𝑠 ≈ 2o ↔ { 𝐴 , 𝐵 } ≈ 2o ) ) | |
| 39 | 38 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑠 = { 𝐴 , 𝐵 } ) → ( 𝑠 ≈ 2o ↔ { 𝐴 , 𝐵 } ≈ 2o ) ) |
| 40 | 37 39 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑠 = { 𝐴 , 𝐵 } ) → 𝑠 ≈ 2o ) |
| 41 | 35 40 | jca | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑠 = { 𝐴 , 𝐵 } ) → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ∧ 𝑠 ≈ 2o ) ) |
| 42 | 41 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑠 = { 𝐴 , 𝐵 } → ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ∧ 𝑠 ≈ 2o ) ) ) |
| 43 | 23 42 | impbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ∧ 𝑠 ≈ 2o ) ↔ 𝑠 = { 𝐴 , 𝐵 } ) ) |
| 44 | breq1 | ⊢ ( 𝑝 = 𝑠 → ( 𝑝 ≈ 2o ↔ 𝑠 ≈ 2o ) ) | |
| 45 | 44 | elrab | ⊢ ( 𝑠 ∈ { 𝑝 ∈ 𝒫 { 𝐴 , 𝐵 } ∣ 𝑝 ≈ 2o } ↔ ( 𝑠 ∈ 𝒫 { 𝐴 , 𝐵 } ∧ 𝑠 ≈ 2o ) ) |
| 46 | velsn | ⊢ ( 𝑠 ∈ { { 𝐴 , 𝐵 } } ↔ 𝑠 = { 𝐴 , 𝐵 } ) | |
| 47 | 43 45 46 | 3bitr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑠 ∈ { 𝑝 ∈ 𝒫 { 𝐴 , 𝐵 } ∣ 𝑝 ≈ 2o } ↔ 𝑠 ∈ { { 𝐴 , 𝐵 } } ) ) |
| 48 | 47 | eqrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝑝 ∈ 𝒫 { 𝐴 , 𝐵 } ∣ 𝑝 ≈ 2o } = { { 𝐴 , 𝐵 } } ) |