This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The parallel product is a subclass of ( (V X. V ) X. (V X. V ) ) . (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pprodss4v | ⊢ pprod ( 𝐴 , 𝐵 ) ⊆ ( ( V × V ) × ( V × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pprod | ⊢ pprod ( 𝐴 , 𝐵 ) = ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) | |
| 2 | txprel | ⊢ Rel ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) | |
| 3 | txpss3v | ⊢ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ⊆ ( V × ( V × V ) ) | |
| 4 | 3 | sseli | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( V × ( V × V ) ) ) |
| 5 | opelxp2 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( V × ( V × V ) ) → 𝑦 ∈ ( V × V ) ) | |
| 6 | 4 5 | syl | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑦 ∈ ( V × V ) ) |
| 7 | elvv | ⊢ ( 𝑦 ∈ ( V × V ) ↔ ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 ) | |
| 8 | opeq2 | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ↔ 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) ) |
| 10 | df-br | ⊢ ( 𝑥 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑧 , 𝑤 〉 ↔ 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) | |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | vex | ⊢ 𝑧 ∈ V | |
| 13 | vex | ⊢ 𝑤 ∈ V | |
| 14 | 11 12 13 | brtxp | ⊢ ( 𝑥 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑧 , 𝑤 〉 ↔ ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 ∧ 𝑥 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑤 ) ) |
| 15 | 11 12 | brco | ⊢ ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 ↔ ∃ 𝑦 ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 16 | brresi | ⊢ ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ↔ ( 𝑥 ∈ ( V × V ) ∧ 𝑥 1st 𝑦 ) ) |
| 18 | 17 | simplbi | ⊢ ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 → 𝑥 ∈ ( V × V ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 ∈ ( V × V ) ) |
| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑥 ( 1st ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 ∈ ( V × V ) ) |
| 21 | 15 20 | sylbi | ⊢ ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 → 𝑥 ∈ ( V × V ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑥 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑧 ∧ 𝑥 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑤 ) → 𝑥 ∈ ( V × V ) ) |
| 23 | 14 22 | sylbi | ⊢ ( 𝑥 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑧 , 𝑤 〉 → 𝑥 ∈ ( V × V ) ) |
| 24 | 10 23 | sylbir | ⊢ ( 〈 𝑥 , 〈 𝑧 , 𝑤 〉 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) |
| 25 | 9 24 | biimtrdi | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) ) |
| 26 | 25 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) ) |
| 27 | 7 26 | sylbi | ⊢ ( 𝑦 ∈ ( V × V ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) ) |
| 28 | 6 27 | mpcom | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 𝑥 ∈ ( V × V ) ) |
| 29 | 28 6 | opelxpd | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( V × V ) × ( V × V ) ) ) |
| 30 | 2 29 | relssi | ⊢ ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) ⊆ ( ( V × V ) × ( V × V ) ) |
| 31 | 1 30 | eqsstri | ⊢ pprod ( 𝐴 , 𝐵 ) ⊆ ( ( V × V ) × ( V × V ) ) |