This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The parallel product is a subclass of ( (V X. V ) X. (V X. V ) ) . (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pprodss4v | |- pprod ( A , B ) C_ ( ( _V X. _V ) X. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pprod | |- pprod ( A , B ) = ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) |
|
| 2 | txprel | |- Rel ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) |
|
| 3 | txpss3v | |- ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) C_ ( _V X. ( _V X. _V ) ) |
|
| 4 | 3 | sseli | |- ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> <. x , y >. e. ( _V X. ( _V X. _V ) ) ) |
| 5 | opelxp2 | |- ( <. x , y >. e. ( _V X. ( _V X. _V ) ) -> y e. ( _V X. _V ) ) |
|
| 6 | 4 5 | syl | |- ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> y e. ( _V X. _V ) ) |
| 7 | elvv | |- ( y e. ( _V X. _V ) <-> E. z E. w y = <. z , w >. ) |
|
| 8 | opeq2 | |- ( y = <. z , w >. -> <. x , y >. = <. x , <. z , w >. >. ) |
|
| 9 | 8 | eleq1d | |- ( y = <. z , w >. -> ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <-> <. x , <. z , w >. >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) ) ) |
| 10 | df-br | |- ( x ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <. z , w >. <-> <. x , <. z , w >. >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- z e. _V |
|
| 13 | vex | |- w e. _V |
|
| 14 | 11 12 13 | brtxp | |- ( x ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <. z , w >. <-> ( x ( A o. ( 1st |` ( _V X. _V ) ) ) z /\ x ( B o. ( 2nd |` ( _V X. _V ) ) ) w ) ) |
| 15 | 11 12 | brco | |- ( x ( A o. ( 1st |` ( _V X. _V ) ) ) z <-> E. y ( x ( 1st |` ( _V X. _V ) ) y /\ y A z ) ) |
| 16 | vex | |- y e. _V |
|
| 17 | 16 | brresi | |- ( x ( 1st |` ( _V X. _V ) ) y <-> ( x e. ( _V X. _V ) /\ x 1st y ) ) |
| 18 | 17 | simplbi | |- ( x ( 1st |` ( _V X. _V ) ) y -> x e. ( _V X. _V ) ) |
| 19 | 18 | adantr | |- ( ( x ( 1st |` ( _V X. _V ) ) y /\ y A z ) -> x e. ( _V X. _V ) ) |
| 20 | 19 | exlimiv | |- ( E. y ( x ( 1st |` ( _V X. _V ) ) y /\ y A z ) -> x e. ( _V X. _V ) ) |
| 21 | 15 20 | sylbi | |- ( x ( A o. ( 1st |` ( _V X. _V ) ) ) z -> x e. ( _V X. _V ) ) |
| 22 | 21 | adantr | |- ( ( x ( A o. ( 1st |` ( _V X. _V ) ) ) z /\ x ( B o. ( 2nd |` ( _V X. _V ) ) ) w ) -> x e. ( _V X. _V ) ) |
| 23 | 14 22 | sylbi | |- ( x ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) <. z , w >. -> x e. ( _V X. _V ) ) |
| 24 | 10 23 | sylbir | |- ( <. x , <. z , w >. >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> x e. ( _V X. _V ) ) |
| 25 | 9 24 | biimtrdi | |- ( y = <. z , w >. -> ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> x e. ( _V X. _V ) ) ) |
| 26 | 25 | exlimivv | |- ( E. z E. w y = <. z , w >. -> ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> x e. ( _V X. _V ) ) ) |
| 27 | 7 26 | sylbi | |- ( y e. ( _V X. _V ) -> ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> x e. ( _V X. _V ) ) ) |
| 28 | 6 27 | mpcom | |- ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> x e. ( _V X. _V ) ) |
| 29 | 28 6 | opelxpd | |- ( <. x , y >. e. ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) -> <. x , y >. e. ( ( _V X. _V ) X. ( _V X. _V ) ) ) |
| 30 | 2 29 | relssi | |- ( ( A o. ( 1st |` ( _V X. _V ) ) ) (x) ( B o. ( 2nd |` ( _V X. _V ) ) ) ) C_ ( ( _V X. _V ) X. ( _V X. _V ) ) |
| 31 | 1 30 | eqsstri | |- pprod ( A , B ) C_ ( ( _V X. _V ) X. ( _V X. _V ) ) |