This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v , this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brpprod.1 | ⊢ 𝑋 ∈ V | |
| brpprod.2 | ⊢ 𝑌 ∈ V | ||
| brpprod.3 | ⊢ 𝑍 ∈ V | ||
| brpprod.4 | ⊢ 𝑊 ∈ V | ||
| Assertion | brpprod | ⊢ ( 〈 𝑋 , 𝑌 〉 pprod ( 𝐴 , 𝐵 ) 〈 𝑍 , 𝑊 〉 ↔ ( 𝑋 𝐴 𝑍 ∧ 𝑌 𝐵 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brpprod.1 | ⊢ 𝑋 ∈ V | |
| 2 | brpprod.2 | ⊢ 𝑌 ∈ V | |
| 3 | brpprod.3 | ⊢ 𝑍 ∈ V | |
| 4 | brpprod.4 | ⊢ 𝑊 ∈ V | |
| 5 | df-pprod | ⊢ pprod ( 𝐴 , 𝐵 ) = ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) | |
| 6 | 5 | breqi | ⊢ ( 〈 𝑋 , 𝑌 〉 pprod ( 𝐴 , 𝐵 ) 〈 𝑍 , 𝑊 〉 ↔ 〈 𝑋 , 𝑌 〉 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑍 , 𝑊 〉 ) |
| 7 | opex | ⊢ 〈 𝑋 , 𝑌 〉 ∈ V | |
| 8 | 7 3 4 | brtxp | ⊢ ( 〈 𝑋 , 𝑌 〉 ( ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) ⊗ ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) ) 〈 𝑍 , 𝑊 〉 ↔ ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ∧ 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ) ) |
| 9 | 7 3 | brco | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ↔ ∃ 𝑥 ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑥 𝐴 𝑍 ) ) |
| 10 | 1 2 | opelvv | ⊢ 〈 𝑋 , 𝑌 〉 ∈ ( V × V ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | 11 | brresi | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( V × V ) ∧ 〈 𝑋 , 𝑌 〉 1st 𝑥 ) ) |
| 13 | 10 12 | mpbiran | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 〈 𝑋 , 𝑌 〉 1st 𝑥 ) |
| 14 | 1 2 | br1steq | ⊢ ( 〈 𝑋 , 𝑌 〉 1st 𝑥 ↔ 𝑥 = 𝑋 ) |
| 15 | 13 14 | bitri | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 𝑥 = 𝑋 ) |
| 16 | 15 | anbi1i | ⊢ ( ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑥 𝐴 𝑍 ) ↔ ( 𝑥 = 𝑋 ∧ 𝑥 𝐴 𝑍 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑥 ( 〈 𝑋 , 𝑌 〉 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑥 𝐴 𝑍 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝑥 𝐴 𝑍 ) ) |
| 18 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐴 𝑍 ↔ 𝑋 𝐴 𝑍 ) ) | |
| 19 | 1 18 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝑥 𝐴 𝑍 ) ↔ 𝑋 𝐴 𝑍 ) |
| 20 | 9 17 19 | 3bitri | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ↔ 𝑋 𝐴 𝑍 ) |
| 21 | 7 4 | brco | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ↔ ∃ 𝑦 ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐵 𝑊 ) ) |
| 22 | vex | ⊢ 𝑦 ∈ V | |
| 23 | 22 | brresi | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝑋 , 𝑌 〉 ∈ ( V × V ) ∧ 〈 𝑋 , 𝑌 〉 2nd 𝑦 ) ) |
| 24 | 10 23 | mpbiran | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 〈 𝑋 , 𝑌 〉 2nd 𝑦 ) |
| 25 | 1 2 | br2ndeq | ⊢ ( 〈 𝑋 , 𝑌 〉 2nd 𝑦 ↔ 𝑦 = 𝑌 ) |
| 26 | 24 25 | bitri | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 𝑦 = 𝑌 ) |
| 27 | 26 | anbi1i | ⊢ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐵 𝑊 ) ↔ ( 𝑦 = 𝑌 ∧ 𝑦 𝐵 𝑊 ) ) |
| 28 | 27 | exbii | ⊢ ( ∃ 𝑦 ( 〈 𝑋 , 𝑌 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ∧ 𝑦 𝐵 𝑊 ) ↔ ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑦 𝐵 𝑊 ) ) |
| 29 | breq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 𝐵 𝑊 ↔ 𝑌 𝐵 𝑊 ) ) | |
| 30 | 2 29 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑦 𝐵 𝑊 ) ↔ 𝑌 𝐵 𝑊 ) |
| 31 | 21 28 30 | 3bitri | ⊢ ( 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ↔ 𝑌 𝐵 𝑊 ) |
| 32 | 20 31 | anbi12i | ⊢ ( ( 〈 𝑋 , 𝑌 〉 ( 𝐴 ∘ ( 1st ↾ ( V × V ) ) ) 𝑍 ∧ 〈 𝑋 , 𝑌 〉 ( 𝐵 ∘ ( 2nd ↾ ( V × V ) ) ) 𝑊 ) ↔ ( 𝑋 𝐴 𝑍 ∧ 𝑌 𝐵 𝑊 ) ) |
| 33 | 6 8 32 | 3bitri | ⊢ ( 〈 𝑋 , 𝑌 〉 pprod ( 𝐴 , 𝐵 ) 〈 𝑍 , 𝑊 〉 ↔ ( 𝑋 𝐴 𝑍 ∧ 𝑌 𝐵 𝑊 ) ) |