This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of postcpos . (Contributed by Zhi Wang, 25-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | postc.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| postc.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| Assertion | postcposALT | ⊢ ( 𝜑 → ( 𝐾 ∈ Poset ↔ 𝐶 ∈ Poset ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | postc.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | postc.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) | |
| 4 | 1 2 3 | prstcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐶 ) ) |
| 5 | eqidd | ⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) | |
| 6 | 1 2 5 | prstcle | ⊢ ( 𝜑 → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
| 7 | 1 2 5 | prstcle | ⊢ ( 𝜑 → ( 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ) |
| 8 | 6 7 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ↔ ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ) ) |
| 9 | 8 | imbi1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 10 | 4 9 | raleqbidvv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 11 | 4 10 | raleqbidvv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 13 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 14 | 12 13 | ispos2 | ⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 15 | 14 | baib | ⊢ ( 𝐾 ∈ Proset → ( 𝐾 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 16 | 2 15 | syl | ⊢ ( 𝜑 → ( 𝐾 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 17 | 1 2 | prstcprs | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 19 | eqid | ⊢ ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) | |
| 20 | 18 19 | ispos2 | ⊢ ( 𝐶 ∈ Poset ↔ ( 𝐶 ∈ Proset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 21 | 20 | baib | ⊢ ( 𝐶 ∈ Proset → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 22 | 17 21 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 23 | 11 16 22 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐾 ∈ Poset ↔ 𝐶 ∈ Poset ) ) |