This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of postcpos . (Contributed by Zhi Wang, 25-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | postc.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| postc.k | |- ( ph -> K e. Proset ) |
||
| Assertion | postcposALT | |- ( ph -> ( K e. Poset <-> C e. Poset ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | postc.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | postc.k | |- ( ph -> K e. Proset ) |
|
| 3 | eqidd | |- ( ph -> ( Base ` K ) = ( Base ` K ) ) |
|
| 4 | 1 2 3 | prstcbas | |- ( ph -> ( Base ` K ) = ( Base ` C ) ) |
| 5 | eqidd | |- ( ph -> ( le ` K ) = ( le ` K ) ) |
|
| 6 | 1 2 5 | prstcle | |- ( ph -> ( x ( le ` K ) y <-> x ( le ` C ) y ) ) |
| 7 | 1 2 5 | prstcle | |- ( ph -> ( y ( le ` K ) x <-> y ( le ` C ) x ) ) |
| 8 | 6 7 | anbi12d | |- ( ph -> ( ( x ( le ` K ) y /\ y ( le ` K ) x ) <-> ( x ( le ` C ) y /\ y ( le ` C ) x ) ) ) |
| 9 | 8 | imbi1d | |- ( ph -> ( ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) <-> ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 10 | 4 9 | raleqbidvv | |- ( ph -> ( A. y e. ( Base ` K ) ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) <-> A. y e. ( Base ` C ) ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 11 | 4 10 | raleqbidvv | |- ( ph -> ( A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 12 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 13 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 14 | 12 13 | ispos2 | |- ( K e. Poset <-> ( K e. Proset /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) ) ) |
| 15 | 14 | baib | |- ( K e. Proset -> ( K e. Poset <-> A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) ) ) |
| 16 | 2 15 | syl | |- ( ph -> ( K e. Poset <-> A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) ) ) |
| 17 | 1 2 | prstcprs | |- ( ph -> C e. Proset ) |
| 18 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 19 | eqid | |- ( le ` C ) = ( le ` C ) |
|
| 20 | 18 19 | ispos2 | |- ( C e. Poset <-> ( C e. Proset /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 21 | 20 | baib | |- ( C e. Proset -> ( C e. Poset <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 22 | 17 21 | syl | |- ( ph -> ( C e. Poset <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 23 | 11 16 22 | 3bitr4d | |- ( ph -> ( K e. Poset <-> C e. Poset ) ) |