This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | postc.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| postc.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| postc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | postc | ⊢ ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | postc.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | postc.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | postc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | 1 2 | prstcprs | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
| 5 | eqid | ⊢ ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) | |
| 6 | 3 5 | ispos2 | ⊢ ( 𝐶 ∈ Poset ↔ ( 𝐶 ∈ Proset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 7 | 6 | baib | ⊢ ( 𝐶 ∈ Proset → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐾 ∈ Proset ) |
| 11 | 9 10 | prstcthin | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ ThinCat ) |
| 12 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 14 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 15 | 11 3 12 13 14 | thinccic | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ↔ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ∧ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) ) |
| 16 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) ) | |
| 17 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 18 | 12 3 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 19 | 13 3 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 20 | 9 10 16 17 18 19 | prstchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ↔ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ) ) |
| 21 | 9 10 16 17 19 18 | prstchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( le ‘ 𝐶 ) 𝑥 ↔ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) |
| 22 | 20 21 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ↔ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ∧ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) ) |
| 23 | 15 22 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ↔ ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ) ) |
| 24 | 23 | imbi1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 25 | 24 | 2ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 26 | 8 25 | bitr4d | ⊢ ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 → 𝑥 = 𝑦 ) ) ) |