This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | postc.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| postc.k | |- ( ph -> K e. Proset ) |
||
| postc.b | |- B = ( Base ` C ) |
||
| Assertion | postc | |- ( ph -> ( C e. Poset <-> A. x e. B A. y e. B ( x ( ~=c ` C ) y -> x = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | postc.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | postc.k | |- ( ph -> K e. Proset ) |
|
| 3 | postc.b | |- B = ( Base ` C ) |
|
| 4 | 1 2 | prstcprs | |- ( ph -> C e. Proset ) |
| 5 | eqid | |- ( le ` C ) = ( le ` C ) |
|
| 6 | 3 5 | ispos2 | |- ( C e. Poset <-> ( C e. Proset /\ A. x e. B A. y e. B ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 7 | 6 | baib | |- ( C e. Proset -> ( C e. Poset <-> A. x e. B A. y e. B ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 8 | 4 7 | syl | |- ( ph -> ( C e. Poset <-> A. x e. B A. y e. B ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 9 | 1 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C = ( ProsetToCat ` K ) ) |
| 10 | 2 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> K e. Proset ) |
| 11 | 9 10 | prstcthin | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C e. ThinCat ) |
| 12 | simprl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 13 | simprr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 14 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 15 | 11 3 12 13 14 | thinccic | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( ~=c ` C ) y <-> ( ( x ( Hom ` C ) y ) =/= (/) /\ ( y ( Hom ` C ) x ) =/= (/) ) ) ) |
| 16 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( le ` C ) = ( le ` C ) ) |
|
| 17 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( Hom ` C ) = ( Hom ` C ) ) |
|
| 18 | 12 3 | eleqtrdi | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` C ) ) |
| 19 | 13 3 | eleqtrdi | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` C ) ) |
| 20 | 9 10 16 17 18 19 | prstchom | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( le ` C ) y <-> ( x ( Hom ` C ) y ) =/= (/) ) ) |
| 21 | 9 10 16 17 19 18 | prstchom | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( y ( le ` C ) x <-> ( y ( Hom ` C ) x ) =/= (/) ) ) |
| 22 | 20 21 | anbi12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( x ( le ` C ) y /\ y ( le ` C ) x ) <-> ( ( x ( Hom ` C ) y ) =/= (/) /\ ( y ( Hom ` C ) x ) =/= (/) ) ) ) |
| 23 | 15 22 | bitr4d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( ~=c ` C ) y <-> ( x ( le ` C ) y /\ y ( le ` C ) x ) ) ) |
| 24 | 23 | imbi1d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( x ( ~=c ` C ) y -> x = y ) <-> ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 25 | 24 | 2ralbidva | |- ( ph -> ( A. x e. B A. y e. B ( x ( ~=c ` C ) y -> x = y ) <-> A. x e. B A. y e. B ( ( x ( le ` C ) y /\ y ( le ` C ) x ) -> x = y ) ) ) |
| 26 | 8 25 | bitr4d | |- ( ph -> ( C e. Poset <-> A. x e. B A. y e. B ( x ( ~=c ` C ) y -> x = y ) ) ) |