This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partial ordering of a singleton. (Contributed by NM, 27-Apr-2009) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | posn | ⊢ ( Rel 𝑅 → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 | ⊢ 𝑅 Po ∅ | |
| 2 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 3 | poeq2 | ⊢ ( { 𝐴 } = ∅ → ( 𝑅 Po { 𝐴 } ↔ 𝑅 Po ∅ ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑅 Po { 𝐴 } ↔ 𝑅 Po ∅ ) ) |
| 5 | 1 4 | mpbiri | ⊢ ( ¬ 𝐴 ∈ V → 𝑅 Po { 𝐴 } ) |
| 6 | 5 | adantl | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → 𝑅 Po { 𝐴 } ) |
| 7 | brrelex1 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐴 ) → 𝐴 ∈ V ) | |
| 8 | 7 | stoic1a | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ¬ 𝐴 𝑅 𝐴 ) |
| 9 | 6 8 | 2thd | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 10 | 9 | ex | ⊢ ( Rel 𝑅 → ( ¬ 𝐴 ∈ V → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) ) |
| 11 | df-po | ⊢ ( 𝑅 Po { 𝐴 } ↔ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 12 | breq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑅 𝐴 ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) ) ) |
| 14 | breq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑥 𝑅 𝑧 ↔ 𝑥 𝑅 𝐴 ) ) | |
| 15 | 13 14 | imbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) ) |
| 16 | 15 | anbi2d | ⊢ ( 𝑧 = 𝐴 → ( ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) ) ) |
| 17 | 16 | ralsng | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑧 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) ) ) |
| 18 | 17 | ralbidv | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑦 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) ) ) |
| 19 | simpl | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝑦 ) | |
| 20 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝐴 ) ) | |
| 21 | 19 20 | imbitrid | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) |
| 22 | 21 | biantrud | ⊢ ( 𝑦 = 𝐴 → ( ¬ 𝑥 𝑅 𝑥 ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) ) ) |
| 23 | 22 | bicomd | ⊢ ( 𝑦 = 𝐴 → ( ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 24 | 23 | ralsng | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐴 ) → 𝑥 𝑅 𝐴 ) ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 25 | 18 24 | bitrd | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 26 | 25 | ralbidv | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑥 ∈ { 𝐴 } ¬ 𝑥 𝑅 𝑥 ) ) |
| 27 | breq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) | |
| 28 | 27 | anidms | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) |
| 29 | 28 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 30 | 29 | ralsng | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 31 | 26 30 | bitrd | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 32 | 11 31 | bitrid | ⊢ ( 𝐴 ∈ V → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| 33 | 10 32 | pm2.61d2 | ⊢ ( Rel 𝑅 → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |