This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sosn | ⊢ ( Rel 𝑅 → ( 𝑅 Or { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
| 2 | elsni | ⊢ ( 𝑦 ∈ { 𝐴 } → 𝑦 = 𝐴 ) | |
| 3 | 2 | eqcomd | ⊢ ( 𝑦 ∈ { 𝐴 } → 𝐴 = 𝑦 ) |
| 4 | 1 3 | sylan9eq | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → 𝑥 = 𝑦 ) |
| 5 | 4 | 3mix2d | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 6 | 5 | rgen2 | ⊢ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) |
| 7 | df-so | ⊢ ( 𝑅 Or { 𝐴 } ↔ ( 𝑅 Po { 𝐴 } ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 8 | 6 7 | mpbiran2 | ⊢ ( 𝑅 Or { 𝐴 } ↔ 𝑅 Po { 𝐴 } ) |
| 9 | posn | ⊢ ( Rel 𝑅 → ( 𝑅 Po { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) | |
| 10 | 8 9 | bitrid | ⊢ ( Rel 𝑅 → ( 𝑅 Or { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |