This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partial ordering of a singleton. (Contributed by NM, 27-Apr-2009) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | posn | |- ( Rel R -> ( R Po { A } <-> -. A R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 | |- R Po (/) |
|
| 2 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 3 | poeq2 | |- ( { A } = (/) -> ( R Po { A } <-> R Po (/) ) ) |
|
| 4 | 2 3 | sylbi | |- ( -. A e. _V -> ( R Po { A } <-> R Po (/) ) ) |
| 5 | 1 4 | mpbiri | |- ( -. A e. _V -> R Po { A } ) |
| 6 | 5 | adantl | |- ( ( Rel R /\ -. A e. _V ) -> R Po { A } ) |
| 7 | brrelex1 | |- ( ( Rel R /\ A R A ) -> A e. _V ) |
|
| 8 | 7 | stoic1a | |- ( ( Rel R /\ -. A e. _V ) -> -. A R A ) |
| 9 | 6 8 | 2thd | |- ( ( Rel R /\ -. A e. _V ) -> ( R Po { A } <-> -. A R A ) ) |
| 10 | 9 | ex | |- ( Rel R -> ( -. A e. _V -> ( R Po { A } <-> -. A R A ) ) ) |
| 11 | df-po | |- ( R Po { A } <-> A. x e. { A } A. y e. { A } A. z e. { A } ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
|
| 12 | breq2 | |- ( z = A -> ( y R z <-> y R A ) ) |
|
| 13 | 12 | anbi2d | |- ( z = A -> ( ( x R y /\ y R z ) <-> ( x R y /\ y R A ) ) ) |
| 14 | breq2 | |- ( z = A -> ( x R z <-> x R A ) ) |
|
| 15 | 13 14 | imbi12d | |- ( z = A -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( x R y /\ y R A ) -> x R A ) ) ) |
| 16 | 15 | anbi2d | |- ( z = A -> ( ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> ( -. x R x /\ ( ( x R y /\ y R A ) -> x R A ) ) ) ) |
| 17 | 16 | ralsng | |- ( A e. _V -> ( A. z e. { A } ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> ( -. x R x /\ ( ( x R y /\ y R A ) -> x R A ) ) ) ) |
| 18 | 17 | ralbidv | |- ( A e. _V -> ( A. y e. { A } A. z e. { A } ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> A. y e. { A } ( -. x R x /\ ( ( x R y /\ y R A ) -> x R A ) ) ) ) |
| 19 | simpl | |- ( ( x R y /\ y R A ) -> x R y ) |
|
| 20 | breq2 | |- ( y = A -> ( x R y <-> x R A ) ) |
|
| 21 | 19 20 | imbitrid | |- ( y = A -> ( ( x R y /\ y R A ) -> x R A ) ) |
| 22 | 21 | biantrud | |- ( y = A -> ( -. x R x <-> ( -. x R x /\ ( ( x R y /\ y R A ) -> x R A ) ) ) ) |
| 23 | 22 | bicomd | |- ( y = A -> ( ( -. x R x /\ ( ( x R y /\ y R A ) -> x R A ) ) <-> -. x R x ) ) |
| 24 | 23 | ralsng | |- ( A e. _V -> ( A. y e. { A } ( -. x R x /\ ( ( x R y /\ y R A ) -> x R A ) ) <-> -. x R x ) ) |
| 25 | 18 24 | bitrd | |- ( A e. _V -> ( A. y e. { A } A. z e. { A } ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> -. x R x ) ) |
| 26 | 25 | ralbidv | |- ( A e. _V -> ( A. x e. { A } A. y e. { A } A. z e. { A } ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> A. x e. { A } -. x R x ) ) |
| 27 | breq12 | |- ( ( x = A /\ x = A ) -> ( x R x <-> A R A ) ) |
|
| 28 | 27 | anidms | |- ( x = A -> ( x R x <-> A R A ) ) |
| 29 | 28 | notbid | |- ( x = A -> ( -. x R x <-> -. A R A ) ) |
| 30 | 29 | ralsng | |- ( A e. _V -> ( A. x e. { A } -. x R x <-> -. A R A ) ) |
| 31 | 26 30 | bitrd | |- ( A e. _V -> ( A. x e. { A } A. y e. { A } A. z e. { A } ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> -. A R A ) ) |
| 32 | 11 31 | bitrid | |- ( A e. _V -> ( R Po { A } <-> -. A R A ) ) |
| 33 | 10 32 | pm2.61d2 | |- ( Rel R -> ( R Po { A } <-> -. A R A ) ) |