This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 17-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapsub.b | |- B = ( Base ` K ) |
|
| pmapsub.s | |- S = ( PSubSp ` K ) |
||
| pmapsub.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapsub | |- ( ( K e. Lat /\ X e. B ) -> ( M ` X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapsub.b | |- B = ( Base ` K ) |
|
| 2 | pmapsub.s | |- S = ( PSubSp ` K ) |
|
| 3 | pmapsub.m | |- M = ( pmap ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
| 6 | 1 4 5 3 | pmapval | |- ( ( K e. Lat /\ X e. B ) -> ( M ` X ) = { c e. ( Atoms ` K ) | c ( le ` K ) X } ) |
| 7 | breq1 | |- ( c = p -> ( c ( le ` K ) X <-> p ( le ` K ) X ) ) |
|
| 8 | 7 | elrab | |- ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } <-> ( p e. ( Atoms ` K ) /\ p ( le ` K ) X ) ) |
| 9 | 1 5 | atbase | |- ( p e. ( Atoms ` K ) -> p e. B ) |
| 10 | 9 | anim1i | |- ( ( p e. ( Atoms ` K ) /\ p ( le ` K ) X ) -> ( p e. B /\ p ( le ` K ) X ) ) |
| 11 | 8 10 | sylbi | |- ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } -> ( p e. B /\ p ( le ` K ) X ) ) |
| 12 | breq1 | |- ( c = q -> ( c ( le ` K ) X <-> q ( le ` K ) X ) ) |
|
| 13 | 12 | elrab | |- ( q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } <-> ( q e. ( Atoms ` K ) /\ q ( le ` K ) X ) ) |
| 14 | 1 5 | atbase | |- ( q e. ( Atoms ` K ) -> q e. B ) |
| 15 | 14 | anim1i | |- ( ( q e. ( Atoms ` K ) /\ q ( le ` K ) X ) -> ( q e. B /\ q ( le ` K ) X ) ) |
| 16 | 13 15 | sylbi | |- ( q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } -> ( q e. B /\ q ( le ` K ) X ) ) |
| 17 | 11 16 | anim12i | |- ( ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) -> ( ( p e. B /\ p ( le ` K ) X ) /\ ( q e. B /\ q ( le ` K ) X ) ) ) |
| 18 | an4 | |- ( ( ( p e. B /\ p ( le ` K ) X ) /\ ( q e. B /\ q ( le ` K ) X ) ) <-> ( ( p e. B /\ q e. B ) /\ ( p ( le ` K ) X /\ q ( le ` K ) X ) ) ) |
|
| 19 | 17 18 | sylib | |- ( ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) -> ( ( p e. B /\ q e. B ) /\ ( p ( le ` K ) X /\ q ( le ` K ) X ) ) ) |
| 20 | 19 | anim2i | |- ( ( ( K e. Lat /\ X e. B ) /\ ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) -> ( ( K e. Lat /\ X e. B ) /\ ( ( p e. B /\ q e. B ) /\ ( p ( le ` K ) X /\ q ( le ` K ) X ) ) ) ) |
| 21 | 1 5 | atbase | |- ( r e. ( Atoms ` K ) -> r e. B ) |
| 22 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 23 | 1 4 22 | latjle12 | |- ( ( K e. Lat /\ ( p e. B /\ q e. B /\ X e. B ) ) -> ( ( p ( le ` K ) X /\ q ( le ` K ) X ) <-> ( p ( join ` K ) q ) ( le ` K ) X ) ) |
| 24 | 23 | biimpd | |- ( ( K e. Lat /\ ( p e. B /\ q e. B /\ X e. B ) ) -> ( ( p ( le ` K ) X /\ q ( le ` K ) X ) -> ( p ( join ` K ) q ) ( le ` K ) X ) ) |
| 25 | 24 | 3exp2 | |- ( K e. Lat -> ( p e. B -> ( q e. B -> ( X e. B -> ( ( p ( le ` K ) X /\ q ( le ` K ) X ) -> ( p ( join ` K ) q ) ( le ` K ) X ) ) ) ) ) |
| 26 | 25 | impd | |- ( K e. Lat -> ( ( p e. B /\ q e. B ) -> ( X e. B -> ( ( p ( le ` K ) X /\ q ( le ` K ) X ) -> ( p ( join ` K ) q ) ( le ` K ) X ) ) ) ) |
| 27 | 26 | com23 | |- ( K e. Lat -> ( X e. B -> ( ( p e. B /\ q e. B ) -> ( ( p ( le ` K ) X /\ q ( le ` K ) X ) -> ( p ( join ` K ) q ) ( le ` K ) X ) ) ) ) |
| 28 | 27 | imp43 | |- ( ( ( K e. Lat /\ X e. B ) /\ ( ( p e. B /\ q e. B ) /\ ( p ( le ` K ) X /\ q ( le ` K ) X ) ) ) -> ( p ( join ` K ) q ) ( le ` K ) X ) |
| 29 | 28 | adantr | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( ( p e. B /\ q e. B ) /\ ( p ( le ` K ) X /\ q ( le ` K ) X ) ) ) /\ r e. B ) -> ( p ( join ` K ) q ) ( le ` K ) X ) |
| 30 | 1 22 | latjcl | |- ( ( K e. Lat /\ p e. B /\ q e. B ) -> ( p ( join ` K ) q ) e. B ) |
| 31 | 30 | 3expib | |- ( K e. Lat -> ( ( p e. B /\ q e. B ) -> ( p ( join ` K ) q ) e. B ) ) |
| 32 | 1 4 | lattr | |- ( ( K e. Lat /\ ( r e. B /\ ( p ( join ` K ) q ) e. B /\ X e. B ) ) -> ( ( r ( le ` K ) ( p ( join ` K ) q ) /\ ( p ( join ` K ) q ) ( le ` K ) X ) -> r ( le ` K ) X ) ) |
| 33 | 32 | 3exp2 | |- ( K e. Lat -> ( r e. B -> ( ( p ( join ` K ) q ) e. B -> ( X e. B -> ( ( r ( le ` K ) ( p ( join ` K ) q ) /\ ( p ( join ` K ) q ) ( le ` K ) X ) -> r ( le ` K ) X ) ) ) ) ) |
| 34 | 33 | com24 | |- ( K e. Lat -> ( X e. B -> ( ( p ( join ` K ) q ) e. B -> ( r e. B -> ( ( r ( le ` K ) ( p ( join ` K ) q ) /\ ( p ( join ` K ) q ) ( le ` K ) X ) -> r ( le ` K ) X ) ) ) ) ) |
| 35 | 31 34 | syl5d | |- ( K e. Lat -> ( X e. B -> ( ( p e. B /\ q e. B ) -> ( r e. B -> ( ( r ( le ` K ) ( p ( join ` K ) q ) /\ ( p ( join ` K ) q ) ( le ` K ) X ) -> r ( le ` K ) X ) ) ) ) ) |
| 36 | 35 | imp41 | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( p e. B /\ q e. B ) ) /\ r e. B ) -> ( ( r ( le ` K ) ( p ( join ` K ) q ) /\ ( p ( join ` K ) q ) ( le ` K ) X ) -> r ( le ` K ) X ) ) |
| 37 | 36 | adantlrr | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( ( p e. B /\ q e. B ) /\ ( p ( le ` K ) X /\ q ( le ` K ) X ) ) ) /\ r e. B ) -> ( ( r ( le ` K ) ( p ( join ` K ) q ) /\ ( p ( join ` K ) q ) ( le ` K ) X ) -> r ( le ` K ) X ) ) |
| 38 | 29 37 | mpan2d | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( ( p e. B /\ q e. B ) /\ ( p ( le ` K ) X /\ q ( le ` K ) X ) ) ) /\ r e. B ) -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r ( le ` K ) X ) ) |
| 39 | 20 21 38 | syl2an | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) /\ r e. ( Atoms ` K ) ) -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r ( le ` K ) X ) ) |
| 40 | simpr | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) /\ r e. ( Atoms ` K ) ) -> r e. ( Atoms ` K ) ) |
|
| 41 | 39 40 | jctild | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) /\ r e. ( Atoms ` K ) ) -> ( r ( le ` K ) ( p ( join ` K ) q ) -> ( r e. ( Atoms ` K ) /\ r ( le ` K ) X ) ) ) |
| 42 | breq1 | |- ( c = r -> ( c ( le ` K ) X <-> r ( le ` K ) X ) ) |
|
| 43 | 42 | elrab | |- ( r e. { c e. ( Atoms ` K ) | c ( le ` K ) X } <-> ( r e. ( Atoms ` K ) /\ r ( le ` K ) X ) ) |
| 44 | 41 43 | imbitrrdi | |- ( ( ( ( K e. Lat /\ X e. B ) /\ ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) /\ r e. ( Atoms ` K ) ) -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) |
| 45 | 44 | ralrimiva | |- ( ( ( K e. Lat /\ X e. B ) /\ ( p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } /\ q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) -> A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) |
| 46 | 45 | ralrimivva | |- ( ( K e. Lat /\ X e. B ) -> A. p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) |
| 47 | ssrab2 | |- { c e. ( Atoms ` K ) | c ( le ` K ) X } C_ ( Atoms ` K ) |
|
| 48 | 46 47 | jctil | |- ( ( K e. Lat /\ X e. B ) -> ( { c e. ( Atoms ` K ) | c ( le ` K ) X } C_ ( Atoms ` K ) /\ A. p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) ) |
| 49 | 4 22 5 2 | ispsubsp | |- ( K e. Lat -> ( { c e. ( Atoms ` K ) | c ( le ` K ) X } e. S <-> ( { c e. ( Atoms ` K ) | c ( le ` K ) X } C_ ( Atoms ` K ) /\ A. p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) ) ) |
| 50 | 49 | adantr | |- ( ( K e. Lat /\ X e. B ) -> ( { c e. ( Atoms ` K ) | c ( le ` K ) X } e. S <-> ( { c e. ( Atoms ` K ) | c ( le ` K ) X } C_ ( Atoms ` K ) /\ A. p e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. q e. { c e. ( Atoms ` K ) | c ( le ` K ) X } A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { c e. ( Atoms ` K ) | c ( le ` K ) X } ) ) ) ) |
| 51 | 48 50 | mpbird | |- ( ( K e. Lat /\ X e. B ) -> { c e. ( Atoms ` K ) | c ( le ` K ) X } e. S ) |
| 52 | 6 51 | eqeltrd | |- ( ( K e. Lat /\ X e. B ) -> ( M ` X ) e. S ) |