This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.24 in WhiteheadRussell p. 191. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.24 | ⊢ ( ∃! 𝑥 𝜑 → ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = ( ℩ 𝑥 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 𝜑 | |
| 2 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 3 | pm14.12 | ⊢ ( ∃! 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) | |
| 4 | 3 | 19.21bbi | ⊢ ( ∃! 𝑥 𝜑 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 5 | 4 | ancomsd | ⊢ ( ∃! 𝑥 𝜑 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 6 | 5 | expdimp | ⊢ ( ( ∃! 𝑥 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 7 | pm13.13b | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝑥 = 𝑦 ) → 𝜑 ) | |
| 8 | 7 | ex | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ∃! 𝑥 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 10 | 6 9 | impbid | ⊢ ( ( ∃! 𝑥 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 11 | 10 | ex | ⊢ ( ∃! 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 12 | 1 2 11 | alrimd | ⊢ ( ∃! 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 13 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
| 14 | 13 | eqcomd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 15 | 12 14 | syl6 | ⊢ ( ∃! 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = ( ℩ 𝑥 𝜑 ) ) ) |
| 16 | iota4 | ⊢ ( ∃! 𝑥 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) | |
| 17 | dfsbcq | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) ) | |
| 18 | 16 17 | syl5ibrcom | ⊢ ( ∃! 𝑥 𝜑 → ( 𝑦 = ( ℩ 𝑥 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 19 | 15 18 | impbid | ⊢ ( ∃! 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = ( ℩ 𝑥 𝜑 ) ) ) |
| 20 | 19 | alrimiv | ⊢ ( ∃! 𝑥 𝜑 → ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = ( ℩ 𝑥 𝜑 ) ) ) |