This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.24 in WhiteheadRussell p. 191. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.24 | |- ( E! x ph -> A. y ( [. y / x ]. ph <-> y = ( iota x ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 | |- F/ x E! x ph |
|
| 2 | nfsbc1v | |- F/ x [. y / x ]. ph |
|
| 3 | pm14.12 | |- ( E! x ph -> A. x A. y ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
|
| 4 | 3 | 19.21bbi | |- ( E! x ph -> ( ( ph /\ [. y / x ]. ph ) -> x = y ) ) |
| 5 | 4 | ancomsd | |- ( E! x ph -> ( ( [. y / x ]. ph /\ ph ) -> x = y ) ) |
| 6 | 5 | expdimp | |- ( ( E! x ph /\ [. y / x ]. ph ) -> ( ph -> x = y ) ) |
| 7 | pm13.13b | |- ( ( [. y / x ]. ph /\ x = y ) -> ph ) |
|
| 8 | 7 | ex | |- ( [. y / x ]. ph -> ( x = y -> ph ) ) |
| 9 | 8 | adantl | |- ( ( E! x ph /\ [. y / x ]. ph ) -> ( x = y -> ph ) ) |
| 10 | 6 9 | impbid | |- ( ( E! x ph /\ [. y / x ]. ph ) -> ( ph <-> x = y ) ) |
| 11 | 10 | ex | |- ( E! x ph -> ( [. y / x ]. ph -> ( ph <-> x = y ) ) ) |
| 12 | 1 2 11 | alrimd | |- ( E! x ph -> ( [. y / x ]. ph -> A. x ( ph <-> x = y ) ) ) |
| 13 | iotaval | |- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
|
| 14 | 13 | eqcomd | |- ( A. x ( ph <-> x = y ) -> y = ( iota x ph ) ) |
| 15 | 12 14 | syl6 | |- ( E! x ph -> ( [. y / x ]. ph -> y = ( iota x ph ) ) ) |
| 16 | iota4 | |- ( E! x ph -> [. ( iota x ph ) / x ]. ph ) |
|
| 17 | dfsbcq | |- ( y = ( iota x ph ) -> ( [. y / x ]. ph <-> [. ( iota x ph ) / x ]. ph ) ) |
|
| 18 | 16 17 | syl5ibrcom | |- ( E! x ph -> ( y = ( iota x ph ) -> [. y / x ]. ph ) ) |
| 19 | 15 18 | impbid | |- ( E! x ph -> ( [. y / x ]. ph <-> y = ( iota x ph ) ) ) |
| 20 | 19 | alrimiv | |- ( E! x ph -> A. y ( [. y / x ]. ph <-> y = ( iota x ph ) ) ) |