This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.242 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotavalsb | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 2 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 3 | iotavalb | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) | |
| 4 | dfsbcq | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) | |
| 5 | 4 | eqcoms | ⊢ ( ( ℩ 𝑥 𝜑 ) = 𝑦 → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) |
| 6 | 3 5 | biimtrdi | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) ) |
| 7 | 2 6 | sylbir | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) ) |
| 8 | 1 7 | mpcom | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) |