This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.12 in WhiteheadRussell p. 184. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.12 | ⊢ ( ∃! 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo | ⊢ ( ∃! 𝑥 𝜑 → ∃* 𝑥 𝜑 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | 2 | mo3 | ⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 4 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 6 | 5 | imbi1i | ⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 7 | 6 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 8 | 3 7 | bitri | ⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 9 | 1 8 | sylib | ⊢ ( ∃! 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |