This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ply1plusgfvi | ⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑅 ∈ V → ( Poly1 ‘ ( I ‘ 𝑅 ) ) = ( Poly1 ‘ 𝑅 ) ) |
| 3 | 2 | fveq2d | ⊢ ( 𝑅 ∈ V → ( +g ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) = ( +g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 4 | eqid | ⊢ ( Poly1 ‘ ∅ ) = ( Poly1 ‘ ∅ ) | |
| 5 | eqid | ⊢ ( 1o mPoly ∅ ) = ( 1o mPoly ∅ ) | |
| 6 | eqid | ⊢ ( +g ‘ ( Poly1 ‘ ∅ ) ) = ( +g ‘ ( Poly1 ‘ ∅ ) ) | |
| 7 | 4 5 6 | ply1plusg | ⊢ ( +g ‘ ( Poly1 ‘ ∅ ) ) = ( +g ‘ ( 1o mPoly ∅ ) ) |
| 8 | eqid | ⊢ ( 1o mPwSer ∅ ) = ( 1o mPwSer ∅ ) | |
| 9 | eqid | ⊢ ( +g ‘ ( 1o mPoly ∅ ) ) = ( +g ‘ ( 1o mPoly ∅ ) ) | |
| 10 | 5 8 9 | mplplusg | ⊢ ( +g ‘ ( 1o mPoly ∅ ) ) = ( +g ‘ ( 1o mPwSer ∅ ) ) |
| 11 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 12 | psr1baslem | ⊢ ( ℕ0 ↑m 1o ) = { 𝑎 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 13 | eqid | ⊢ ( Base ‘ ( 1o mPwSer ∅ ) ) = ( Base ‘ ( 1o mPwSer ∅ ) ) | |
| 14 | 1on | ⊢ 1o ∈ On | |
| 15 | 14 | a1i | ⊢ ( ⊤ → 1o ∈ On ) |
| 16 | 8 11 12 13 15 | psrbas | ⊢ ( ⊤ → ( Base ‘ ( 1o mPwSer ∅ ) ) = ( ∅ ↑m ( ℕ0 ↑m 1o ) ) ) |
| 17 | 16 | mptru | ⊢ ( Base ‘ ( 1o mPwSer ∅ ) ) = ( ∅ ↑m ( ℕ0 ↑m 1o ) ) |
| 18 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 19 | 18 | fconst6 | ⊢ ( 1o × { 0 } ) : 1o ⟶ ℕ0 |
| 20 | nn0ex | ⊢ ℕ0 ∈ V | |
| 21 | 1oex | ⊢ 1o ∈ V | |
| 22 | 20 21 | elmap | ⊢ ( ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 0 } ) : 1o ⟶ ℕ0 ) |
| 23 | 19 22 | mpbir | ⊢ ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) |
| 24 | ne0i | ⊢ ( ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) → ( ℕ0 ↑m 1o ) ≠ ∅ ) | |
| 25 | map0b | ⊢ ( ( ℕ0 ↑m 1o ) ≠ ∅ → ( ∅ ↑m ( ℕ0 ↑m 1o ) ) = ∅ ) | |
| 26 | 23 24 25 | mp2b | ⊢ ( ∅ ↑m ( ℕ0 ↑m 1o ) ) = ∅ |
| 27 | 17 26 | eqtr2i | ⊢ ∅ = ( Base ‘ ( 1o mPwSer ∅ ) ) |
| 28 | eqid | ⊢ ( +g ‘ ∅ ) = ( +g ‘ ∅ ) | |
| 29 | eqid | ⊢ ( +g ‘ ( 1o mPwSer ∅ ) ) = ( +g ‘ ( 1o mPwSer ∅ ) ) | |
| 30 | 8 27 28 29 | psrplusg | ⊢ ( +g ‘ ( 1o mPwSer ∅ ) ) = ( ∘f ( +g ‘ ∅ ) ↾ ( ∅ × ∅ ) ) |
| 31 | xp0 | ⊢ ( ∅ × ∅ ) = ∅ | |
| 32 | 31 | reseq2i | ⊢ ( ∘f ( +g ‘ ∅ ) ↾ ( ∅ × ∅ ) ) = ( ∘f ( +g ‘ ∅ ) ↾ ∅ ) |
| 33 | 10 30 32 | 3eqtri | ⊢ ( +g ‘ ( 1o mPoly ∅ ) ) = ( ∘f ( +g ‘ ∅ ) ↾ ∅ ) |
| 34 | res0 | ⊢ ( ∘f ( +g ‘ ∅ ) ↾ ∅ ) = ∅ | |
| 35 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 36 | 35 | str0 | ⊢ ∅ = ( +g ‘ ∅ ) |
| 37 | 34 36 | eqtri | ⊢ ( ∘f ( +g ‘ ∅ ) ↾ ∅ ) = ( +g ‘ ∅ ) |
| 38 | 7 33 37 | 3eqtri | ⊢ ( +g ‘ ( Poly1 ‘ ∅ ) ) = ( +g ‘ ∅ ) |
| 39 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) | |
| 40 | 39 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ ( I ‘ 𝑅 ) ) = ( Poly1 ‘ ∅ ) ) |
| 41 | 40 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) = ( +g ‘ ( Poly1 ‘ ∅ ) ) ) |
| 42 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) | |
| 43 | 42 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ∅ ) ) |
| 44 | 38 41 43 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) = ( +g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 45 | 3 44 | pm2.61i | ⊢ ( +g ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) = ( +g ‘ ( Poly1 ‘ 𝑅 ) ) |
| 46 | 45 | eqcomi | ⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) |