This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1baspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| ply1baspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | ||
| ply1baspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | ||
| Assertion | ply1baspropd | ⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1baspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | ply1baspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | |
| 3 | ply1baspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 4 | 1 2 3 | mplbaspropd | ⊢ ( 𝜑 → ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) ) |
| 5 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 7 | 5 6 | ply1bas | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 8 | eqid | ⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 10 | 8 9 | ply1bas | ⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) |
| 11 | 4 7 10 | 3eqtr4g | ⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |