This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ply1plusgfvi | |- ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` ( _I ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi | |- ( R e. _V -> ( _I ` R ) = R ) |
|
| 2 | 1 | fveq2d | |- ( R e. _V -> ( Poly1 ` ( _I ` R ) ) = ( Poly1 ` R ) ) |
| 3 | 2 | fveq2d | |- ( R e. _V -> ( +g ` ( Poly1 ` ( _I ` R ) ) ) = ( +g ` ( Poly1 ` R ) ) ) |
| 4 | eqid | |- ( Poly1 ` (/) ) = ( Poly1 ` (/) ) |
|
| 5 | eqid | |- ( 1o mPoly (/) ) = ( 1o mPoly (/) ) |
|
| 6 | eqid | |- ( +g ` ( Poly1 ` (/) ) ) = ( +g ` ( Poly1 ` (/) ) ) |
|
| 7 | 4 5 6 | ply1plusg | |- ( +g ` ( Poly1 ` (/) ) ) = ( +g ` ( 1o mPoly (/) ) ) |
| 8 | eqid | |- ( 1o mPwSer (/) ) = ( 1o mPwSer (/) ) |
|
| 9 | eqid | |- ( +g ` ( 1o mPoly (/) ) ) = ( +g ` ( 1o mPoly (/) ) ) |
|
| 10 | 5 8 9 | mplplusg | |- ( +g ` ( 1o mPoly (/) ) ) = ( +g ` ( 1o mPwSer (/) ) ) |
| 11 | base0 | |- (/) = ( Base ` (/) ) |
|
| 12 | psr1baslem | |- ( NN0 ^m 1o ) = { a e. ( NN0 ^m 1o ) | ( `' a " NN ) e. Fin } |
|
| 13 | eqid | |- ( Base ` ( 1o mPwSer (/) ) ) = ( Base ` ( 1o mPwSer (/) ) ) |
|
| 14 | 1on | |- 1o e. On |
|
| 15 | 14 | a1i | |- ( T. -> 1o e. On ) |
| 16 | 8 11 12 13 15 | psrbas | |- ( T. -> ( Base ` ( 1o mPwSer (/) ) ) = ( (/) ^m ( NN0 ^m 1o ) ) ) |
| 17 | 16 | mptru | |- ( Base ` ( 1o mPwSer (/) ) ) = ( (/) ^m ( NN0 ^m 1o ) ) |
| 18 | 0nn0 | |- 0 e. NN0 |
|
| 19 | 18 | fconst6 | |- ( 1o X. { 0 } ) : 1o --> NN0 |
| 20 | nn0ex | |- NN0 e. _V |
|
| 21 | 1oex | |- 1o e. _V |
|
| 22 | 20 21 | elmap | |- ( ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { 0 } ) : 1o --> NN0 ) |
| 23 | 19 22 | mpbir | |- ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) |
| 24 | ne0i | |- ( ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) -> ( NN0 ^m 1o ) =/= (/) ) |
|
| 25 | map0b | |- ( ( NN0 ^m 1o ) =/= (/) -> ( (/) ^m ( NN0 ^m 1o ) ) = (/) ) |
|
| 26 | 23 24 25 | mp2b | |- ( (/) ^m ( NN0 ^m 1o ) ) = (/) |
| 27 | 17 26 | eqtr2i | |- (/) = ( Base ` ( 1o mPwSer (/) ) ) |
| 28 | eqid | |- ( +g ` (/) ) = ( +g ` (/) ) |
|
| 29 | eqid | |- ( +g ` ( 1o mPwSer (/) ) ) = ( +g ` ( 1o mPwSer (/) ) ) |
|
| 30 | 8 27 28 29 | psrplusg | |- ( +g ` ( 1o mPwSer (/) ) ) = ( oF ( +g ` (/) ) |` ( (/) X. (/) ) ) |
| 31 | xp0 | |- ( (/) X. (/) ) = (/) |
|
| 32 | 31 | reseq2i | |- ( oF ( +g ` (/) ) |` ( (/) X. (/) ) ) = ( oF ( +g ` (/) ) |` (/) ) |
| 33 | 10 30 32 | 3eqtri | |- ( +g ` ( 1o mPoly (/) ) ) = ( oF ( +g ` (/) ) |` (/) ) |
| 34 | res0 | |- ( oF ( +g ` (/) ) |` (/) ) = (/) |
|
| 35 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 36 | 35 | str0 | |- (/) = ( +g ` (/) ) |
| 37 | 34 36 | eqtri | |- ( oF ( +g ` (/) ) |` (/) ) = ( +g ` (/) ) |
| 38 | 7 33 37 | 3eqtri | |- ( +g ` ( Poly1 ` (/) ) ) = ( +g ` (/) ) |
| 39 | fvprc | |- ( -. R e. _V -> ( _I ` R ) = (/) ) |
|
| 40 | 39 | fveq2d | |- ( -. R e. _V -> ( Poly1 ` ( _I ` R ) ) = ( Poly1 ` (/) ) ) |
| 41 | 40 | fveq2d | |- ( -. R e. _V -> ( +g ` ( Poly1 ` ( _I ` R ) ) ) = ( +g ` ( Poly1 ` (/) ) ) ) |
| 42 | fvprc | |- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
|
| 43 | 42 | fveq2d | |- ( -. R e. _V -> ( +g ` ( Poly1 ` R ) ) = ( +g ` (/) ) ) |
| 44 | 38 41 43 | 3eqtr4a | |- ( -. R e. _V -> ( +g ` ( Poly1 ` ( _I ` R ) ) ) = ( +g ` ( Poly1 ` R ) ) ) |
| 45 | 3 44 | pm2.61i | |- ( +g ` ( Poly1 ` ( _I ` R ) ) ) = ( +g ` ( Poly1 ` R ) ) |
| 46 | 45 | eqcomi | |- ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` ( _I ` R ) ) ) |