This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ply1basfvi and deg1fvi . (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00ply1bas | ⊢ ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ 𝑎 ∈ ∅ | |
| 2 | noel | ⊢ ¬ ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ | |
| 3 | eqid | ⊢ ( Poly1 ‘ ∅ ) = ( Poly1 ‘ ∅ ) | |
| 4 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ ∅ ) ) = ( Base ‘ ( Poly1 ‘ ∅ ) ) | |
| 5 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 6 | 3 4 5 | ply1basf | ⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) → 𝑎 : ( ℕ0 ↑m 1o ) ⟶ ∅ ) |
| 7 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 8 | 7 | fconst6 | ⊢ ( 1o × { 0 } ) : 1o ⟶ ℕ0 |
| 9 | nn0ex | ⊢ ℕ0 ∈ V | |
| 10 | 1oex | ⊢ 1o ∈ V | |
| 11 | 9 10 | elmap | ⊢ ( ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 0 } ) : 1o ⟶ ℕ0 ) |
| 12 | 8 11 | mpbir | ⊢ ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) |
| 13 | ffvelcdm | ⊢ ( ( 𝑎 : ( ℕ0 ↑m 1o ) ⟶ ∅ ∧ ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ ) | |
| 14 | 6 12 13 | sylancl | ⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) → ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ ) |
| 15 | 2 14 | mto | ⊢ ¬ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) |
| 16 | 1 15 | 2false | ⊢ ( 𝑎 ∈ ∅ ↔ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) ) |
| 17 | 16 | eqriv | ⊢ ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) ) |