This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1opprmul.y | |- Y = ( Poly1 ` R ) |
|
| ply1opprmul.s | |- S = ( oppR ` R ) |
||
| ply1opprmul.z | |- Z = ( Poly1 ` S ) |
||
| ply1opprmul.t | |- .x. = ( .r ` Y ) |
||
| ply1opprmul.u | |- .xb = ( .r ` Z ) |
||
| ply1opprmul.b | |- B = ( Base ` Y ) |
||
| Assertion | ply1opprmul | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .xb G ) = ( G .x. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1opprmul.y | |- Y = ( Poly1 ` R ) |
|
| 2 | ply1opprmul.s | |- S = ( oppR ` R ) |
|
| 3 | ply1opprmul.z | |- Z = ( Poly1 ` S ) |
|
| 4 | ply1opprmul.t | |- .x. = ( .r ` Y ) |
|
| 5 | ply1opprmul.u | |- .xb = ( .r ` Z ) |
|
| 6 | ply1opprmul.b | |- B = ( Base ` Y ) |
|
| 7 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 8 | 1 6 | ply1bascl | |- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
| 9 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 10 | eqid | |- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
|
| 11 | 9 10 | psr1bascl | |- ( F e. ( Base ` ( PwSer1 ` R ) ) -> F e. ( Base ` ( 1o mPwSer R ) ) ) |
| 12 | 8 11 | syl | |- ( F e. B -> F e. ( Base ` ( 1o mPwSer R ) ) ) |
| 13 | 1 6 | ply1bascl | |- ( G e. B -> G e. ( Base ` ( PwSer1 ` R ) ) ) |
| 14 | 9 10 | psr1bascl | |- ( G e. ( Base ` ( PwSer1 ` R ) ) -> G e. ( Base ` ( 1o mPwSer R ) ) ) |
| 15 | 13 14 | syl | |- ( G e. B -> G e. ( Base ` ( 1o mPwSer R ) ) ) |
| 16 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 17 | eqid | |- ( 1o mPwSer S ) = ( 1o mPwSer S ) |
|
| 18 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 19 | 1 18 4 | ply1mulr | |- .x. = ( .r ` ( 1o mPoly R ) ) |
| 20 | 18 16 19 | mplmulr | |- .x. = ( .r ` ( 1o mPwSer R ) ) |
| 21 | eqid | |- ( 1o mPoly S ) = ( 1o mPoly S ) |
|
| 22 | 3 21 5 | ply1mulr | |- .xb = ( .r ` ( 1o mPoly S ) ) |
| 23 | 21 17 22 | mplmulr | |- .xb = ( .r ` ( 1o mPwSer S ) ) |
| 24 | eqid | |- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
|
| 25 | 16 2 17 20 23 24 | psropprmul | |- ( ( R e. Ring /\ F e. ( Base ` ( 1o mPwSer R ) ) /\ G e. ( Base ` ( 1o mPwSer R ) ) ) -> ( F .xb G ) = ( G .x. F ) ) |
| 26 | 7 12 15 25 | syl3an | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .xb G ) = ( G .x. F ) ) |