This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1opprmul.y | ||
| ply1opprmul.s | |||
| ply1opprmul.z | |||
| ply1opprmul.t | |||
| ply1opprmul.u | |||
| ply1opprmul.b | |||
| Assertion | ply1opprmul |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1opprmul.y | ||
| 2 | ply1opprmul.s | ||
| 3 | ply1opprmul.z | ||
| 4 | ply1opprmul.t | ||
| 5 | ply1opprmul.u | ||
| 6 | ply1opprmul.b | ||
| 7 | id | ||
| 8 | 1 6 | ply1bascl | |
| 9 | eqid | ||
| 10 | eqid | ||
| 11 | 9 10 | psr1bascl | |
| 12 | 8 11 | syl | |
| 13 | 1 6 | ply1bascl | |
| 14 | 9 10 | psr1bascl | |
| 15 | 13 14 | syl | |
| 16 | eqid | ||
| 17 | eqid | ||
| 18 | eqid | ||
| 19 | 1 18 4 | ply1mulr | |
| 20 | 18 16 19 | mplmulr | |
| 21 | eqid | ||
| 22 | 3 21 5 | ply1mulr | |
| 23 | 21 17 22 | mplmulr | |
| 24 | eqid | ||
| 25 | 16 2 17 20 23 24 | psropprmul | |
| 26 | 7 12 15 25 | syl3an |