This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1val.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1lss.2 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | ||
| ply1lss.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| Assertion | ply1lss | ⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( LSubSp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1lss.2 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| 3 | ply1lss.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 4 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 5 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 6 | 1 3 | ply1bas | ⊢ 𝑈 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 7 | 1on | ⊢ 1o ∈ On | |
| 8 | 7 | a1i | ⊢ ( 𝑅 ∈ Ring → 1o ∈ On ) |
| 9 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 10 | 4 5 6 8 9 | mpllss | ⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( LSubSp ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 11 | eqidd | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) | |
| 12 | 2 | psr1val | ⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
| 13 | 0ss | ⊢ ∅ ⊆ ( 1o × 1o ) | |
| 14 | 13 | a1i | ⊢ ( 𝑅 ∈ Ring → ∅ ⊆ ( 1o × 1o ) ) |
| 15 | 4 12 14 | opsrbas | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
| 16 | ssv | ⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ⊆ V | |
| 17 | 16 | a1i | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) ⊆ V ) |
| 18 | 4 12 14 | opsrplusg | ⊢ ( 𝑅 ∈ Ring → ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g ‘ 𝑆 ) ) |
| 19 | 18 | oveqdr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 20 | ovexd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) ∈ V ) | |
| 21 | 4 12 14 | opsrvsca | ⊢ ( 𝑅 ∈ Ring → ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) = ( ·𝑠 ‘ 𝑆 ) ) |
| 22 | 21 | oveqdr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) |
| 23 | 4 8 9 | psrsca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( 1o mPwSer 𝑅 ) ) ) ) |
| 25 | 4 12 14 8 9 | opsrsca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 27 | 11 15 17 19 20 22 24 26 | lsspropd | ⊢ ( 𝑅 ∈ Ring → ( LSubSp ‘ ( 1o mPwSer 𝑅 ) ) = ( LSubSp ‘ 𝑆 ) ) |
| 28 | 10 27 | eleqtrd | ⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( LSubSp ‘ 𝑆 ) ) |