This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1val.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1val.2 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | ||
| Assertion | ply1val | ⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1val.2 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| 3 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( PwSer1 ‘ 𝑟 ) = ( PwSer1 ‘ 𝑅 ) ) | |
| 4 | 3 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( PwSer1 ‘ 𝑟 ) = 𝑆 ) |
| 5 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( 1o mPoly 𝑟 ) = ( 1o mPoly 𝑅 ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ ( 1o mPoly 𝑟 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 7 | 4 6 | oveq12d | ⊢ ( 𝑟 = 𝑅 → ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 8 | df-ply1 | ⊢ Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) | |
| 9 | ovex | ⊢ ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 11 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) | |
| 12 | ress0 | ⊢ ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) = ∅ | |
| 13 | 11 12 | eqtr4di | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 14 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ∅ ) | |
| 15 | 2 14 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑆 = ∅ ) |
| 16 | 15 | oveq1d | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) = ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 17 | 13 16 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 18 | 10 17 | pm2.61i | ⊢ ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 19 | 1 18 | eqtri | ⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |